Advertisement

Proteomic Analysis of Posttranslational Modifications Using iTRAQ in Leishmania

  • Dan ZilbersteinEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1201)

Abstract

iTRAQ is a high coverage quantitative proteomics technique identifies and quantitates abundance changes of multiple (up to eight) distinct protein samples. To date, one iTRAQ-MS/MS assay can identify up to quarter of cells proteome. Each of the eight tags covalently binds to the N-terminus as well as arginine and lysine side chains of peptides, enabling labeling of the entire peptide population in each sample. Following tagging, the various protein samples are mixed and subjected to LC-MS/MS analysis. In the first round identical peptides from the different protein populations focus in a single pick. Subsequently, sequence of each peptide is determined. The tags whose m/z is similar to that of natural amino acids are used to determine relative abundance. To date, iTRAQ enabled identification of almost 2,000 Leishmania proteins. Here, we provide protocols for protein abundance changes and for phosphoproteomics analysis in Leishmania parasites.

Key words

Leishmania iTRAQ Affinity tag Proteomics Phosphoproteomics Protein expression Quantitative proteomics 

Notes

Acknowledgments

I thank Dr. Polina Tsigankov for critical reading. I thanks Drs. Christoph ** and *** for providing me their protocols. This work was supported by U.S.-Israel Binational Foundation grant 2009226.

References

  1. 1.
    Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25:117–124CrossRefPubMedGoogle Scholar
  2. 2.
    Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Garcia-Martinez J, Gonzalez-Candelas F, Perez-Ortin JE (2007) Common gene expression strategies revealed by genome-wide analysis in yeast. Genome Biol 8:R222CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Schmidt MW, Houseman A, Ivanov AR, Wolf DA (2007) Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe. Mol Syst Biol 3:79CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156:93–101CrossRefPubMedGoogle Scholar
  6. 6.
    Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D, Myler PJ (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25:515–525CrossRefPubMedGoogle Scholar
  7. 7.
    Haile S, Papadopoulou B (2007) Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 10:569–577CrossRefPubMedGoogle Scholar
  8. 8.
    Melanson JE, Avery SL, Pinto DM (2006) High-coverage quantitative proteomics using amine-specific isotopic labeling. Proteomics 6:4466–4474CrossRefPubMedGoogle Scholar
  9. 9.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999CrossRefPubMedGoogle Scholar
  10. 10.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386CrossRefPubMedGoogle Scholar
  11. 11.
    Rosenzweig D, Smith D, Opperdoes FR, Stern S, Olafson RW, Zilberstein D (2008) Retooling Leishmania metabolism: from sandfly gut to human macrophage. FASEB J 22:590–602CrossRefPubMedGoogle Scholar
  12. 12.
    Rosenzweig D, Smith D, Myler PJ, Olafson RW, Zilberstein D (2008) Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics 8:1843–1850CrossRefPubMedGoogle Scholar
  13. 13.
    Tsigankov P, Gherardini PE, Helmer-Citerich M, Spath GF, Myler PJ, Zilberstein D (2014) Regulation dynamics of Leishmania differentiation: deconvolution signals and identifying phosphorylation trend. Mol Cell Proteomics 13:1787–1799Google Scholar
  14. 14.
    Sardar AH, Kumar S, Kumar A, Purkait B, Das S, Sen A, Kumar M, Sinha KK, Singh D, Equbal A, Ali V, Das P (2013) Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses. J Proteomics 81:185–199CrossRefPubMedGoogle Scholar
  15. 15.
    Lynn MA, Marr AK, McMaster WR (2013) Differential quantitative proteomic profiling of Leishmania infantum and Leishmania mexicana density gradient separated membranous fractions. J Proteomics 82:179–192CrossRefPubMedGoogle Scholar
  16. 16.
    Saar Y, Ransford A, Waldman E, Mazareb S, Amin-Spector S, Plumblee J, Turco SJ, Zilberstein D (1998) Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani. Mol Biochem Parasitol 95:9–20CrossRefPubMedGoogle Scholar
  17. 17.
    Mahoney DW, Therneau TM, Heppelmann CJ, Higgins L, Benson LM, Zenka RM, Jagtap P, Nelsestuen GL, Bergen HR, Oberg AL (2011) Relative quantification: characterization of bias, variability and fold changes in mass spectrometry data from iTRAQ-labeled peptides. J Proteome Res 10:4325–4333CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Barak E, Amin-Spector S, Gerliak E, Goyard S, Holland N, Zilberstein D (2005) Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Mol Biochem Parasitol 141:99–108CrossRefPubMedGoogle Scholar
  19. 19.
    Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6:1638–1655CrossRefPubMedGoogle Scholar
  20. 20.
    Gosline SJ, Nascimento M, McCall LI, Zilberstein D, Thomas DY, Matlashewski G, Hallett M (2011) Intracellular eukaryotic parasites have a distinct unfolded protein response. PLoS One 6:e19118CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of BiologyTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations