Skip to main content

RNA-Seq Approaches for Determining mRNA Abundance in Leishmania

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1201))

Abstract

High-throughput sequencing of cDNA copies of mRNA (RNA-seq) provides a digital read-out of mRNA levels over several orders of magnitude, as well as mapping the transcripts to the nucleotide level. Here we describe an RNA-seq approach that exploits the 39-nucleotide mini-exon or spliced leader (SL) sequence found at the 5′ end of all Leishmania (and other trypanosomatid) mRNAs.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ivens AC, Peacock CS, Worthey EA et al (2005) The genome of the kinetoplastid parasite, Leishmania major Science 309:436–442

    Article  PubMed Central  PubMed  Google Scholar 

  2. Berriman M, Ghedin E, Hertz-Fowler C et al (2005) The genome of the African trypanosome, Trypanosoma brucei Science 309:416–422

    Article  CAS  PubMed  Google Scholar 

  3. El-Sayed NM, Myler PJ, Bartholomeu DC et al (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  CAS  PubMed  Google Scholar 

  4. El-Sayed NM, Myler PJ, Blandin G et al (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409

    Article  CAS  PubMed  Google Scholar 

  5. Saxena A, Lahav T, Holland N et al (2007) Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol 152:53–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lahav T, Sivam D, Volpin H et al (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25:515–525

    Article  CAS  PubMed  Google Scholar 

  7. Duncan R (2004) DNA microarray analysis of protozoan parasite gene expression: outcomes correlate with mechanisms of regulation. Trends Parasitol 20:211–215

    Article  CAS  PubMed  Google Scholar 

  8. Duncan RC, Salotra P, Goyal N et al (2004) The application of gene expression microarray technology to kinetoplastid research. Curr Mol Med 4:611–621

    Article  CAS  PubMed  Google Scholar 

  9. Guimond C, Trudel N, Brochu C et al (2003) Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res 31:5886–5896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. McNicoll F, Drummelsmith J, Muller M et al (2006) A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 6:3567–3581

    Article  CAS  PubMed  Google Scholar 

  11. Rochette A, Raymond F, Ubeda JM et al (2008) Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 9:255

    Article  PubMed Central  PubMed  Google Scholar 

  12. Almeida R, Gilmartin BJ, McCann SH et al (2004) Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Mol Biochem Parasitol 136:87–100

    Article  CAS  PubMed  Google Scholar 

  13. Holzer TR, McMaster WR, Forney JD (2006) Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana Mol. Biochem Parasitol 146:198–218

    Article  CAS  Google Scholar 

  14. Leifso K, Cohen-Freue G, Dogra N et al (2007) Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: The Leishmania genome is constitutively expressed. Mol Biochem Parasitol 152:35–46

    Article  CAS  PubMed  Google Scholar 

  15. Cohen-Freue G, Holzer TR, Forney JD, McMaster WR (2007) Global gene expression in Leishmania. Int J Parasitol 37:1077–1086

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Clayton CE (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21:1881–1888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nilsson D, Gunasekera K, Mani J et al (2010) Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog 6:e1001037

    Article  PubMed Central  PubMed  Google Scholar 

  19. Mittra B, Cortez M, Haydock A et al (2013) Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med 210:401–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. van Luenen H, Farris C, Jan S et al (2012) Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell 150:909–921

    Article  PubMed Central  PubMed  Google Scholar 

  21. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Myler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Haydock, A., Terrao, M., Sekar, A., Ramasamy, G., Baugh, L., Myler, P.J. (2015). RNA-Seq Approaches for Determining mRNA Abundance in Leishmania . In: Peacock, C. (eds) Parasite Genomics Protocols. Methods in Molecular Biology, vol 1201. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1438-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1438-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1437-1

  • Online ISBN: 978-1-4939-1438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics