Techniques to Study Epigenetic Control and the Epigenome in Parasites

  • Sheila C. Nardelli
  • Li-Min Ting
  • Kami KimEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1201)


Epigenetics is the study of heritable changes in gene expression that occur independent of the DNA sequence. Due to their intimacy with DNA, histones have a central role in chromatin structure and epigenetic regulation. Their tails are subject to posttranslational modifications (PTMs) that together with chromatin-remodeling proteins control the access of different proteins to DNA and allow a precise response to different environmental conditions. The first part of this chapter is dedicated to histone enrichment methods that allow the study of histones using techniques such as immunoblot or mass spectrometry for the mapping of the histone PTM network. Next we describe chromatin immunoprecipitation-based techniques (ChIP) for study of the epigenome. ChIP followed by microarray or next-generation sequencing enables the precise genomic localization of protein-DNA interactions. These techniques for genome-wide profiling of chromatin provide powerful and efficient tools to study the epigenome.

Key words

Histone Chromatin immunoprecipitation Microarray Sequencing 



This work was supported by NIH grants RC4AI092801 (KK), R01AI087625 (KK), and 5T32AI070117-04 (SCN). We thank members of the Kim laboratory for review and helpful suggestions for this chapter.


  1. 1.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45CrossRefPubMedGoogle Scholar
  2. 2.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705CrossRefPubMedGoogle Scholar
  3. 3.
    Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638CrossRefPubMedGoogle Scholar
  4. 4.
    Sullivan WJ Jr, Naguleswaran A, Angel SO (2006) Histones and histone modifications in protozoan parasites. Cell Microbiol 8:1850–1861CrossRefPubMedGoogle Scholar
  5. 5.
    Bougdour A, Braun L, Cannella D et al (2010) Chromatin modifications: implications in the regulation of gene expression in Toxoplasma gondii. Cell Microbiol 12:413–423CrossRefPubMedGoogle Scholar
  6. 6.
    Saksouk N, Bhatti MM, Kieffer S et al (2005) Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol Cell Biol 25:10301–10314CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Hakimi MA, Deitsch KW (2007) Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation. Curr Opin Microbiol 10:357–362CrossRefPubMedGoogle Scholar
  8. 8.
    Croken MM, Nardelli SC, Kim K (2012) Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol 28(5):202–213CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Olins DE, Olins AL (2003) Chromatin history: our view from the bridge, Nature reviews. Mol Cell Biol 4:809–814Google Scholar
  10. 10.
    Shechter D, Dormann HL, Allis CD et al (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457CrossRefPubMedGoogle Scholar
  11. 11.
    Murray K (1966) The acid extraction of histones from calf thymus deoxyribonucleoprotein. J Mol Biol 15:409–419CrossRefPubMedGoogle Scholar
  12. 12.
    Stedman E (1950) Cell specificity of histones. Nature 166:780–781CrossRefPubMedGoogle Scholar
  13. 13.
    von Holt C, Brandt WF, Greyling HJ et al (1989) Isolation and characterization of histones. Methods Enzymol 170:431–523CrossRefGoogle Scholar
  14. 14.
    Toro GC, Galanti N (1990) Trypanosoma cruzi histones. Further characterization and comparison with higher eukaryotes. Biochem Int 21:481–490PubMedGoogle Scholar
  15. 15.
    Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947CrossRefPubMedGoogle Scholar
  16. 16.
    Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81:4275–4279CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309CrossRefPubMedGoogle Scholar
  18. 18.
    Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804CrossRefPubMedGoogle Scholar
  19. 19.
    Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology, Nature reviews. Genetics 10:669–680PubMedCentralPubMedGoogle Scholar
  20. 20.
    Goren A, Ozsolak F, Shoresh N et al (2010) Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods 7:47–49CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502CrossRefPubMedGoogle Scholar
  22. 22.
    Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837CrossRefPubMedGoogle Scholar
  23. 23.
    Hecht A, Strahl-Bolsinger S, Grunstein M (1996) Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383:92–96CrossRefPubMedGoogle Scholar
  24. 24.
    Rundlett SE, Carmen AA, Suka N et al (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835CrossRefPubMedGoogle Scholar
  25. 25.
    Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104CrossRefPubMedGoogle Scholar
  26. 26.
    O’Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31:76–82CrossRefPubMedGoogle Scholar
  27. 27.
    Schones DE, Cui K, Cuddapah S et al (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898CrossRefPubMedGoogle Scholar
  28. 28.
    Iyer VR, Horak CE, Scafe CS et al (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538CrossRefPubMedGoogle Scholar
  29. 29.
    Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360CrossRefPubMedGoogle Scholar
  30. 30.
    Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145CrossRefPubMedGoogle Scholar
  31. 31.
    Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402CrossRefPubMedGoogle Scholar
  32. 32.
    Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedCentralPubMedGoogle Scholar
  33. 33.
    Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552CrossRefPubMedGoogle Scholar
  34. 34.
    Metzker ML (2010) Sequencing technologies—the next generation, Nature reviews. Genetics 11:31–46PubMedGoogle Scholar
  35. 35.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics, Nature reviews. Genetics 10:57–63PubMedCentralPubMedGoogle Scholar
  36. 36.
    Salcedo-Amaya AM, van Driel MA, Alako BT et al (2009) Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci U S A 106:9655–9660CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Flueck C, Bartfai R, Niederwieser I et al (2010) A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog 6:e1000784CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Brooks CF, Francia ME, Gissot M et al (2011) Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle. Proc Natl Acad Sci U S A 108:3767–3772CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Lopez-Rubio JJ, Mancio-Silva L, Scherf A (2009) Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5:179–190CrossRefPubMedGoogle Scholar
  40. 40.
    Gissot M, Kelly KA, Ajioka JW et al (2007) Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii. PLoS Pathog 3:e77CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Siegel TN, Hekstra DR, Kemp LE et al (2009) Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev 23:1063–1076CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Bartfai R, Hoeijmakers WA, Salcedo-Amaya AM et al (2010) H2A.Z demarcates intergenic regions of the plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog 6:e1001223CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Kozarewa I, Ning Z, Quail MA et al (2009) Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G + C)-biased genomes. Nat Methods 6:291–295CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Carey MF, Peterson CL, Smale ST (2009) Chromatin immunoprecipitation (ChIP). Cold Spring Harbor protocols, pdb prot5279.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Instituto Carlos Chagas-FiocruzCuritiba - PRBrazil
  2. 2.Albert Einstein College of MedicineBronxUSA

Personalised recommendations