Skip to main content

Dental Pulp Stem Cell (DPSC) Isolation, Characterization, and Differentiation

  • Protocol
  • First Online:
Stem Cells and Tissue Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1210))

Abstract

Dental pulp stem cells (DPSC) have been proposed as an alternative to pluripotent stem cells to study multilineage differentiation in vitro and for therapeutic application. Standard culture media for isolation and expansion of stem cells includes animal sera or animal-derived matrix components (e.g., Matrigel®). However, animal-derived reagents raise significant concerns with respect to the translational ability of these cells due to the possibility of infection and/or severe immune reaction. For these reasons clinical grade substitutes to animal components are needed in order for stem cells to reach their full therapeutic potential. In this chapter we detail a method for isolation and proliferation of DPSC in a chemically defined medium containing a low percentage of human serum. We demonstrate that in this defined culture medium a 1.25 % human serum component sufficiently replaces fetal bovine serum. This method allows for isolation of a morphologically and phenotypically uniform population of DPSCs from dental pulp tissue. DPSCs represent a rapidly proliferating cell population that readily differentiates into the osteoblastic, neuronal, myocytic, and hepatocytic lineages. This multilineage capacity of these DPSCs suggests that they may have a more broad therapeutic application than lineage-restricted adult stem cell populations such as mesenchymal stem cells. Further the culture protocol presented here makes these cells more amenable to human application than current expansion techniques for other pluripotent stem cells (embryonic stem cell lines or induced pluripotent stem cells).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van der Valka J, Mellorb D, Brandsc R (2004) The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicol In Vitro 18:1–12

    Article  Google Scholar 

  2. Eloit M (1999) Risks of virus transmission associated with animal sera or substitutes and methods of control. Dev Biol Stand 99:9–16

    CAS  PubMed  Google Scholar 

  3. Shah G (1999) Why do we still use serum in the production of biopharmaceuticals? Dev Biol Stand 99:17–22

    CAS  PubMed  Google Scholar 

  4. Wessman SJ, Levings RL (1999) Benefits and risks due to animal serum used in cell culture production. Dev Biol Stand 99:3–8

    CAS  PubMed  Google Scholar 

  5. Asher DM (1999) Bovine sera used in the manufacture of biologicals: current concerns and policies of the US. Food and drug administration regarding the transmissible spongiform encephalopathies. Dev Biol Stand 99:41–44

    CAS  PubMed  Google Scholar 

  6. Denker HW (2006) Potentiality of embryonic stem cells: an ethical problem even with alternative stem cell sources. J Med Ethics 32:665–671

    Article  PubMed Central  PubMed  Google Scholar 

  7. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  CAS  PubMed  Google Scholar 

  8. Ulloa-Montoya F, Verfaillie CM, Hu WS (2005) Culture systems for pluripotent stem cells. J Biosci Bioeng 100:12–27

    Article  CAS  PubMed  Google Scholar 

  9. Ferro F, Spelat R, Beltrami AP, Cesselli D, Curcio F (2012) Isolation and characterization of human dental pulp derived stem cells by using media containing low human serum percentage as clinical grade substitutes for bovine serum. PLoS One 7(11):e48945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM et al (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing Oct-4 and other embryonic stem cell markers. Cells Tissues Organs 184:105–116

    Article  CAS  PubMed  Google Scholar 

  11. Mohamet L, Lea ML, Ward CM (2010) Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS One. doi:10.1371/0012921

    PubMed Central  PubMed  Google Scholar 

  12. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gronthos S, Brahim J, Li W (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  CAS  PubMed  Google Scholar 

  14. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80:836–842

    Article  PubMed  Google Scholar 

  15. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shi S, Robey PG, Gronthos S (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29:532–539

    Article  CAS  PubMed  Google Scholar 

  17. Huang AH, Chen YK, Lin LM, Shieh TY, Chan AW et al (2008) Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med 37:571–584

    Article  PubMed  Google Scholar 

  18. Ferro F, Spelat R, Falini G, D’Aurizio F, Falini G et al (2011) Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am J Pathol 178:2299–2310

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ferro F, Falini G, Spelat R, D’Aurizio F, Puppato E et al (2010) Biochemical and biophysical analysis of tissue engineered bone obtained from 3D culture of bone marrow mesenchymal stem cells. Tissue Eng Part A 16:3657–3667

    Article  CAS  PubMed  Google Scholar 

  20. Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S et al (2007) Multipotent cells can be generated in vitro from several adult human organs (Heart, Liver and Bone Marrow). Blood 110:3438–3446

    Article  CAS  PubMed  Google Scholar 

  21. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA et al (2004) Marrow isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  Google Scholar 

  22. Liedtke S, Stephan M, Kogler G (2008) Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cells. Biol Chem 389:845–850

    Article  CAS  PubMed  Google Scholar 

  23. Cantz T, Key G, Bleidissel M, Gentile L, Han DW et al (2008) Absence of OCT4 expression in somatic tumor cell lines. Stem Cells 26:692–697

    Article  CAS  PubMed  Google Scholar 

  24. Robey PG, Termine JD (1985) Human bone cells in vitro. Calcif Tissue Int 37:453–460

    Article  CAS  PubMed  Google Scholar 

  25. Curcio F, Ambesi-Impiombato FS, Perrella G, Coon HG (1994) Long-term culture and functional characterization of follicular cells from adult normal human thyroids. Proc Natl Acad Sci U S A 91:9004–9008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hu B, Nadiri A, Bopp-Kuchler S, Perrin-Schmitt F, Wang S et al (2005) Dental epithelial histomorphogenesis in the mouse: positional information versus cell history. Arch Oral Biol 50:131–136

    Article  PubMed  Google Scholar 

  27. Sengupta R, Billiar TR, Atkins JL, Kagan VE, Stoyanovsky DA (2009) Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells. FEBS Lett 583:3525–3530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tweddle DA, Malcolm AJ, Bown N, Pearson AD, Lunec J (2001) Evidence for the development of p53 mutations after cytotoxic therapy in a neuroblastoma cell line. Cancer Res 61:8–13

    CAS  PubMed  Google Scholar 

  29. Ambesi-Impiombato FS, Parks LA, Coon HG (1980) Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A 77:3455–3459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Coon HG, Weiss MC (1969) A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A 62:852–859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ham RG (1965) Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc Natl Acad Sci U S A 53:288–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ferro F, Spelat R, D’Aurizio F, Puppato E, Pandolfi M et al (2012) Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics. PLoS One. doi:10.1371/journal.pone.0041774

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Ferro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ferro, F., Spelat, R., Baheney, C.S. (2014). Dental Pulp Stem Cell (DPSC) Isolation, Characterization, and Differentiation. In: Kioussi, C. (eds) Stem Cells and Tissue Repair. Methods in Molecular Biology, vol 1210. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1435-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1435-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1434-0

  • Online ISBN: 978-1-4939-1435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics