Generation of Murine Xenograft Models of Brain Tumors from Primary Human Tissue for In Vivo Analysis of the Brain Tumor-Initiating Cell

  • Maleeha Qazi
  • Aneet Mann
  • Randy van Ommeren
  • Chitra Venugopal
  • Nicole McFarlane
  • Parvez Vora
  • Sheila K. SinghEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1210)


The generation of xenograft models, which support the growth of human tissue in animals, forms an important part of a researcher’s tool kit and enhances the ability to understand the initiation and development of cancer in vivo. Especially in the context of the brain tumor-initiating cell (BTIC), a xenograft model allows for careful characterization of BTIC roles in tumor initiation, growth, and relapse. Here, we detail a set of procedures which describe the isolation, enrichment, and intracranial injection of human BTICs from patient samples to generate xenograft models of a human brain tumor.

Key words

Flow cytometry Brain tumor-initiating cell (BTIC) Neural stem cell Intracranial injection NOD SCIDs Xenograft 


  1. 1.
    Hope K, Jin L, Dick J (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743. doi: 10.1038/ni1080 PubMedCrossRefGoogle Scholar
  2. 2.
    Reynolds B, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574PubMedGoogle Scholar
  3. 3.
    Hemmati H, Nakano I, Lazareff J et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Singh S, Clarke I, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  5. 5.
    Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRefGoogle Scholar
  6. 6.
    Singh S, Hawkins C, Clarke I et al (2004) Identification of human brain tumor initiating cells. Nature 432:396–401. doi: 10.1038/nature03128 PubMedCrossRefGoogle Scholar
  7. 7.
    Bao S, Wu Q, McLendon R et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nat Lett 444:756–760. doi: 10.1038/nature05236 CrossRefGoogle Scholar
  8. 8.
    Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67. doi: 10.1186/1476-4598-5-67 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82. doi: 10.1016/j.ccr.2006.11.020 PubMedCrossRefGoogle Scholar
  10. 10.
    Kaye A, Morstyn G, Gardner I et al (1986) Development of a Xenograft Glioma model in mouse brain. Cancer Res 46:1367–1373PubMedGoogle Scholar
  11. 11.
    Rana M, Pinkerton H, Thornton H (1977) Heterotransplantation of human glioblastoma multiforme and meningioma to nude mice. Exp Biol Med 155:85–88. doi: 10.3181/00379727-155-39750 CrossRefGoogle Scholar
  12. 12.
    Shapiro W, Basler G, Chernik N et al (1979) Human brain tumor transplantation into nude mice. J Natl Cancer Inst 62:447–453PubMedGoogle Scholar
  13. 13.
    Shultz L, Brehm M, Bavari S et al (2011) Humanized mice as a preclinical tool for infectious disease and biomedical research. Ann N Y Acad Sci 1245:50–54. doi: 10.1111/j.1749-6632.2011.06310.x PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Yin A, Miraglia S, Zanjani E et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012PubMedGoogle Scholar
  15. 15.
    Uchida N, Buck D, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Read T, Fogarty M, Markant S et al (2009) Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15:135–147. doi: 10.1016/j.ccr.2008.12.016 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Allan AL (ed) (2011) Cancer stem cells in solid tumors. Springer, New York, NYGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Maleeha Qazi
    • 1
  • Aneet Mann
    • 1
  • Randy van Ommeren
    • 1
  • Chitra Venugopal
    • 1
  • Nicole McFarlane
    • 1
  • Parvez Vora
    • 1
  • Sheila K. Singh
    • 1
    Email author
  1. 1.McMaster Children’s HospitalMcMaster UniversityHamiltonCanada

Personalised recommendations