Skip to main content

Generation of Murine Xenograft Models of Brain Tumors from Primary Human Tissue for In Vivo Analysis of the Brain Tumor-Initiating Cell

  • Protocol
  • First Online:
Stem Cells and Tissue Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1210))

Abstract

The generation of xenograft models, which support the growth of human tissue in animals, forms an important part of a researcher’s tool kit and enhances the ability to understand the initiation and development of cancer in vivo. Especially in the context of the brain tumor-initiating cell (BTIC), a xenograft model allows for careful characterization of BTIC roles in tumor initiation, growth, and relapse. Here, we detail a set of procedures which describe the isolation, enrichment, and intracranial injection of human BTICs from patient samples to generate xenograft models of a human brain tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hope K, Jin L, Dick J (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743. doi:10.1038/ni1080

    Article  CAS  PubMed  Google Scholar 

  2. Reynolds B, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    CAS  PubMed  Google Scholar 

  3. Hemmati H, Nakano I, Lazareff J et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Singh S, Clarke I, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  5. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  6. Singh S, Hawkins C, Clarke I et al (2004) Identification of human brain tumor initiating cells. Nature 432:396–401. doi:10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  7. Bao S, Wu Q, McLendon R et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nat Lett 444:756–760. doi:10.1038/nature05236

    Article  CAS  Google Scholar 

  8. Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67. doi:10.1186/1476-4598-5-67

    Article  PubMed Central  PubMed  Google Scholar 

  9. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82. doi:10.1016/j.ccr.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  10. Kaye A, Morstyn G, Gardner I et al (1986) Development of a Xenograft Glioma model in mouse brain. Cancer Res 46:1367–1373

    CAS  PubMed  Google Scholar 

  11. Rana M, Pinkerton H, Thornton H (1977) Heterotransplantation of human glioblastoma multiforme and meningioma to nude mice. Exp Biol Med 155:85–88. doi:10.3181/00379727-155-39750

    Article  CAS  Google Scholar 

  12. Shapiro W, Basler G, Chernik N et al (1979) Human brain tumor transplantation into nude mice. J Natl Cancer Inst 62:447–453

    CAS  PubMed  Google Scholar 

  13. Shultz L, Brehm M, Bavari S et al (2011) Humanized mice as a preclinical tool for infectious disease and biomedical research. Ann N Y Acad Sci 1245:50–54. doi:10.1111/j.1749-6632.2011.06310.x

    Article  PubMed Central  PubMed  Google Scholar 

  14. Yin A, Miraglia S, Zanjani E et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    CAS  PubMed  Google Scholar 

  15. Uchida N, Buck D, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Read T, Fogarty M, Markant S et al (2009) Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15:135–147. doi:10.1016/j.ccr.2008.12.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Allan AL (ed) (2011) Cancer stem cells in solid tumors. Springer, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Qazi, M. et al. (2014). Generation of Murine Xenograft Models of Brain Tumors from Primary Human Tissue for In Vivo Analysis of the Brain Tumor-Initiating Cell. In: Kioussi, C. (eds) Stem Cells and Tissue Repair. Methods in Molecular Biology, vol 1210. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1435-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1435-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1434-0

  • Online ISBN: 978-1-4939-1435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics