Skip to main content

Differentiating the Stem Cell Pool of Human Hair Follicle Outer Root Sheath into Functional Melanocytes

  • Protocol
  • First Online:
Stem Cells and Tissue Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1210))

Abstract

Bench-to-Bedside concepts for regenerative therapy place significant weight on noninvasive approaches, with harvesting of the starting material as a header. This is particularly important in autologous treatments, which use one’s bodily constituents for therapy. Precisely the stretch between obtaining therapeutic elements invasively and noninvasively places non-intrusive “sampling” rather than “biopsy” in the center of the road map of developing an autologous regenerative therapy. We focus on such a noninvasively available source of adult stem cells that we carry with us throughout our life, available at our fingertips—or shall we say hair roots, by a simple plucking of hair: the human hair follicle. This chapter describes an explant procedure for cultivating melanocytes differentiated from the stem cell pool of the hair follicle Outer Root Sheath (ORS). In vivo, the most abundant derivatives of the heterogeneous ORS stem cell pool are epidermal cells—melanocytes and keratinocytes which complete their differentiation—either spontaneously or upon picking up regenerative cues from damaged skin—and migrate from the ORS towards the adjacent regenerating area of the epidermis. We have taken advantage of the ORS developmental potential by optimizing explant primary culture, expansion and melanogenic differentiation of resident ORS stem cells towards end-stage melanocytes in order to obtain functional melanocytes noninvasively for the purposes of transplantation and use them for the treatment of depigmentation disorders. Our protocol specifies sampling of hair with their ORS, follicle medium–air interface primary culture, stimulation of cell outgrowth, adherent culture and differentiation of ORS stem cells and precursors towards fully functional melanocytes. Along with cultivation, we describe selection techniques for establishing and maintaining a pure melanocyte population and methods suitable for determining melanocyte identity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Invest Dermatol 126(7):1459–1468

    Article  CAS  PubMed  Google Scholar 

  2. Cotsarelis G, Cheng SZ, Dong G, Sun TT et al (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  CAS  PubMed  Google Scholar 

  3. Biernaskie J (2010) Human hair follicles: "bulging" with neural crest-like stem cells. J Invest Dermatol 130(5):1202–1204

    Article  CAS  PubMed  Google Scholar 

  4. Yu H, Fang D, Kumar SM et al (2006) Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168:1879–1888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hoffman RM (2006) The pluripotency of hair follicle stem cells. Cell Cycle 5:232–233

    Article  CAS  PubMed  Google Scholar 

  6. Amoh Y, Kanoh M, Niiyama S et al (2009) Human and mouse hair follicles contain both multipotent and monopotent stem cells. Cell Cycle 8:176–177

    Article  CAS  PubMed  Google Scholar 

  7. Yu H, Kumar SM, Kossenkov AV et al (2010) Stem cells with neural crest characteristics derived from the bulge region of cultured human hair follicles. J Invest Dermatol 130(5):1227–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Snippert HJ, Haegebarth A, Kasper M et al (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327(5971):1385–1389

    Google Scholar 

  9. Savkovic V, Dieckmann C, Milkova L, Simon JC (2012) Improved method of differentiation, selection and amplification of human melanocytes from the hair follicle cell pool. Exp Dermatol 21(12):948–950

    Article  PubMed  Google Scholar 

  10. Tiede S, Kloepper JE, Bodò E et al (2007) Hair follicle stem cells: walking the maze. Eur J Cell Biol 86(7):355–376

    Article  CAS  PubMed  Google Scholar 

  11. Savkovic C, Dieckmann C, Simon J-C, Schulz-Siegmund M, Hacker M. Method for deriving melanocytes from the hair follicle outer root sheath and preparation for grafting. Patent application. EP PCT/EP2012/071418, WO 2013060899 A3

    Google Scholar 

  12. Mignone JL, Roig-Lopez JL, Fedtsova N et al (2007) Neural potential of a stem cell population in the hair follicle. Cell Cycle 6:211–270

    Article  Google Scholar 

  13. Raposio E, Guida C, Baldelli I, Curto M, Fiocca R, Kunkl A, Robello G, Santi PL (2007) Characterization of multipotent cells from human adult hair follicles. Toxicol In Vitro 21:320–323

    Article  CAS  PubMed  Google Scholar 

  14. Hoogduijn MJ, Gorjup E, Genever PG (2006) Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells Dev 15:49–60

    Article  CAS  PubMed  Google Scholar 

  15. Amoh Y, Li L, Katsuoka K et al (2005) Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shih DT, Lee DC, Chen SC et al (2005) Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 23:1012–1020

    Article  CAS  PubMed  Google Scholar 

  17. Kruse C, Bodó E, Petschnik A et al (2006) Towards the development of a pragmatic technique for isolating and differentiating nestin-positive cells from human scalp skin into neuronal and glial cell populations: generating neurons from human skin? Exp Dermatol 15(10):794–800

    Article  PubMed  Google Scholar 

  18. Toma JG, McKenzie IA, Bagli D et al (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23:727–737

    Article  CAS  PubMed  Google Scholar 

  19. Tobin DJ, Colen SR, Bystryn JC (1995) Isolation and long-term culture of human hair-follicle melanocytes. J Invest Dermatol 104:86–89

    Article  CAS  PubMed  Google Scholar 

  20. Gharzi A, Reynolds AJ, Jahoda CA (2003) Plasticity of hair follicle dermal cells in wound healing and induction. Exp Dermatol 12(2):126–136

    Article  CAS  PubMed  Google Scholar 

  21. Kloepper JE, Tiede S, Brinckmann J et al (2008) Immunophenotyping of the human bulge region: the quest to define useful in situ markers for human epithelial hair follicle stem cells and their niche. Exp Dermatol 17(7):592–609

    Article  PubMed  Google Scholar 

  22. Fernandes KJ, McKenzie IA, Mill P et al (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6:1082–1093

    Article  CAS  PubMed  Google Scholar 

  23. Limat A, Hunziker T (1996) Cultivation of keratinocytes from the outer root sheath of human hair follicles. Methods Mol Med 2:21–31. doi:10.1385/0-89603-335-X:21

    CAS  PubMed  Google Scholar 

  24. Limat A, Hunziker T (2002) Use of epidermal equivalents generated from follicular outer root sheath cells in vitro and for autologous grafting of chronic wounds. Cells Tissues Organs 172(2):79–85

    Article  PubMed  Google Scholar 

  25. Poblet E, Jiménez F, Godínez JM, Pascual-Martín A, Izeta A (2006) The immunohistochemical expression of CD34 in human hair follicles: a comparative study with the bulge marker CK15. Clin Exp Dermatol 31(6):807–812

    Article  CAS  PubMed  Google Scholar 

  26. Zhu WY, Zhang RZ, Ma HJ et al (2004) Isolation and culture of amelanotic melanocytes from human hair follicles. Pigment Cell Res 17(6):668–673

    Article  PubMed  Google Scholar 

  27. Ma HJ, Yue XZ, Wang DG, Li CR, Zhu WY (2006) A modified method for purifying amelanotic melanocytes from human hair follicles. J Dermatol 33(4):239–248

    Article  PubMed  Google Scholar 

  28. Dieckmann C, Milkova L, Hunziker T et al (2010) Human melanocytes can be isolated, propagated and expanded from plucked anagen hair follicles. Exp Dermatol 19(6):543–545

    Article  PubMed  Google Scholar 

  29. Al-Nuaimi Y, Baier G, Watson R et al (2010) The cycling hair follicle as an ideal systems biology research model. Exp Dermatol 19(8):707–713, PubMed PMID: 20590819

    Article  PubMed  Google Scholar 

  30. Savkovic V, Sülflow K, Rabe K, Schneider M, Simon JC (2012) Melanocytes from the outer root sheath of hair follicles cultivated on collagen membrane improve their melanotic properties. J Tissue Sci Eng 3(S):Special section p1

    Google Scholar 

  31. Harper E (1980) Collagenases. Annu Rev Biochem 49:1063

    Article  CAS  PubMed  Google Scholar 

  32. Bar-Nun S et al (1983) G-418, an elongation inhibitor of 80 S ribosomes. Biochim Biophys Acta 741:123–127

    Article  CAS  PubMed  Google Scholar 

  33. Saalbach A, Anderegg U, Schnabel E, Herrmann K, Haustein UF (1996) A novel fibroblast specific antibody. Properties and specificities. J Invest Dermatol 106:1314–1319

    Article  CAS  PubMed  Google Scholar 

  34. Saalbach A, Aust G, Haustein UF, Anderegg U (1997) The fibroblast-specific MAb AS02: a novel tool for detection and elimination of human fibroblasts. Cell Tissue Res 290:593–599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work presented in this paper was made possible by funding from the German Federal Ministry of Education and Research (BMBF 1315883) and the German Research Council SFB TRR 67 project B3 to JCS. We are grateful to Dr. Michael Cross and Pavel Suba for valuable language remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vuk Savkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schneider, M., Dieckmann, C., Rabe, K., Simon, JC., Savkovic, V. (2014). Differentiating the Stem Cell Pool of Human Hair Follicle Outer Root Sheath into Functional Melanocytes. In: Kioussi, C. (eds) Stem Cells and Tissue Repair. Methods in Molecular Biology, vol 1210. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1435-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1435-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1434-0

  • Online ISBN: 978-1-4939-1435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics