Skip to main content

Ubiquitination of Plant Immune Receptors

Part of the Methods in Molecular Biology book series (MIMB,volume 1209)

Abstract

Ubiquitin is a highly conserved regulatory protein consisting of 76 amino acids and ubiquitously expressed in all eukaryotic cells. The reversible ubiquitin conjugation to a wide variety of target proteins, a process known as ubiquitination or ubiquitylation, serves as one of the most important and prevalent posttranslational modifications to regulate the myriad actions of protein cellular functions, including protein degradation, vesicle trafficking, and subcellular localization. Protein ubiquitination is an ATP-dependent stepwise covalent attachment of one or more ubiquitin molecules to target proteins mediated by a hierarchical enzymatic cascade consisting of an E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and E3 ubiquitin ligase. The plant plasma membrane resident receptor-like kinase Flagellin Sensing 2 (FLS2) recognizes bacterial flagellin and initiates innate immune signaling to defend against pathogen attacks. We have recently shown that two plant U-box E3 ubiquitin ligases PUB12 and PUB13 directly ubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, which in turn attenuates FLS2 signaling to prevent excessive or prolonged activation of immune responses. Here, we use FLS2 as an example to describe a protocol for detection of protein ubiquitination in plant cells in vivo and in test tubes in vitro. In addition, we elaborate the approach to identify different types of ubiquitin linkages by using various lysine mutants of ubiquitin. The various in vivo and in vitro ubiquitination assays will provide researchers with the tools to address how ubiquitination regulates diverse cellular functions of target proteins.

Key words

  • Ubiquitin
  • Ubiquitination
  • Polyubiquitin chain
  • Immunoblot
  • Immunoprecipitation (IP)

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1420-3_17
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1420-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bonifacino JS, Weissman AM (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 14:19–57

    CAS  PubMed  CrossRef  Google Scholar 

  2. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    CAS  PubMed  CrossRef  Google Scholar 

  3. Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10(6):385–397

    CAS  PubMed  CrossRef  Google Scholar 

  4. Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926

    CAS  PubMed  CrossRef  Google Scholar 

  5. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  6. Tian G, Finley D (2012) Cell biology: destruction deconstructed. Nature 482(7384):170–171

    CAS  PubMed  CrossRef  Google Scholar 

  7. Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2(3):195–201

    CAS  PubMed  CrossRef  Google Scholar 

  8. Lee MJ, Lee BH, Hanna J et al (2010) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 10(5), R110003871

    CrossRef  Google Scholar 

  9. Shih SC, Sloper-Mould KE, Hicke L (2000) Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J 19(2):187–198

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  10. Thrower JS, Hoffman L, Rechsteiner M et al (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19(1):94–102

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  11. Volk S, Wang M, Pickart CM (2005) Chemical and genetic strategies for manipulating polyubiquitin chain structure. Methods Enzymol 399:3–20

    CAS  PubMed  CrossRef  Google Scholar 

  12. Jacobson AD, Zhang NY, Xu P et al (2009) The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem 284(51):35485–35494

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  13. Sun L, Chen ZJ (2004) The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16(2):119–126

    CAS  PubMed  CrossRef  Google Scholar 

  14. Xia ZP, Sun L, Chen X et al (2009) Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461(7260):114–119

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  15. Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011

    CAS  PubMed  CrossRef  Google Scholar 

  16. Chinchilla D, Zipfel C, Robatzek S et al (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448(7152):497–500

    CAS  PubMed  CrossRef  Google Scholar 

  17. Heese A, Hann DR, Gimenez-Ibanez S et al (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104(29):12217–12222

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  18. Lu D, Wu S, Gao X et al (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107(1):496–501

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  19. Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20(5):537–542

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  20. Lu D, Lin W, Gao X et al (2011) Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332(6036):1439–1442

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  21. Kraft E, Stone SL, Ma L et al (2005) Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol 139(4):1597–1611

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  22. Stone SL, Hauksdottir H, Troy A et al (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137(1):13–30

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  23. He P, Shan L, Sheen J (2007) The use of protoplasts to study innate immune responses. Methods Mol Biol 354:1–9

    CAS  PubMed  Google Scholar 

  24. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  25. Swerdlow PS, Finley D, Varshavsky A (1986) Enhancement of immunoblot sensitivity by heating of hydrated filters. Anal Biochem 156(1):147–153

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dongping Lu for the initial work to establish various ubiquitination assays. The work was supported by the funds from NIH R01GM092893 to P.H and R01GM097247 to L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Shan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhou, J., He, P., Shan, L. (2014). Ubiquitination of Plant Immune Receptors. In: Otegui, M. (eds) Plant Endosomes. Methods in Molecular Biology, vol 1209. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1420-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1420-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1419-7

  • Online ISBN: 978-1-4939-1420-3

  • eBook Packages: Springer Protocols