Galectins pp 421-430

Part of the Methods in Molecular Biology book series (MIMB, volume 1207) | Cite as

Evaluation of the Bactericidal Activity of Galectins

  • Connie M. Arthur
  • Richard D. Cummings
  • Sean R. Stowell

Abstract

Over a century ago, Karl Landsteiner discovered that blood group antigens could predict the immunological outcome of red blood cell transfusion. While the discovery of ABO(H) blood group antigens revolutionized transfusion medicine, many questions remain regarding the development and regulation of naturally occurring anti-blood group antibody formation. Early studies suggested that blood group antibodies develop following stimulation by bacteria that express blood group antigens. While this may explain the development of anti-blood group antibodies in blood group negative individuals, how blood group positive individuals, who cannot generate anti-blood group antibodies, protect themselves against blood group positive microbes remained unknown. Recent studies suggest that several members of the galectin family specifically target blood group positive microbes, thereby providing innate immune protection against blood group antigen positive microbes regardless of the blood group status of an individual. Importantly, subsequent studies suggest that this unique form of immunity may not be limited to blood group expressing microbes, but may reflect a more generalized form of innate immunity against molecular mimicry. As this form of antimicrobial activity represents a unique and unprecedented form of immunity, we will examine important considerations and methodological approaches that can be used when seeking to ascertain the potential antimicrobial activity of various members of the galectin family.

Key words

Galectin Blood group positive microbes Innate immune lectin Molecular mimicry Antimicrobial 

References

  1. 1.
    Springer GF, Williamson P, Brandes WC (1961) Blood group activity of gram-negative bacteria. J Exp Med 113(6):1077–1093PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Springer GF, Horton RE (1969) Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J Clin Invest 48(7):1280–1291. doi:10.1172/JCI106094 PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Yi W, Shao J, Zhu L, Li M, Singh M, Lu Y, Lin S, Li H, Ryu K, Shen J, Guo H, Yao Q, Bush CA, Wang PG (2005) Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J Am Chem Soc 127(7):2040–2041. doi:10.1021/ja045021y PubMedCrossRefGoogle Scholar
  4. 4.
    Garratty G (2000) Blood groups and disease: a historical perspective. Transfus Med Rev 14(4):291–301. doi:10.1053/tmrv.2000.16228 PubMedCrossRefGoogle Scholar
  5. 5.
    Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990) Molecular genetic basis of the histo-blood group ABO system. Nature 345(6272):229–233. doi:10.1038/345229a0 PubMedCrossRefGoogle Scholar
  6. 6.
    Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2(2):77–84. doi:10.1038/nri723 PubMedCrossRefGoogle Scholar
  7. 7.
    van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9(6):593–601. doi:10.1038/ni.f.203 PubMedCrossRefGoogle Scholar
  8. 8.
    Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283(15):10109–10123. doi:10.1074/jbc.M709545200 PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Stowell SR, Arthur CM, Slanina KA, Horton JR, Smith DF, Cummings RD (2008) Dimeric galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem 283(29):20547–20559PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Karmakar S, Stowell SR, Cummings RD, McEver RP (2008) Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology 18(10):770–778PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Poland PA, Rondanino C, Kinlough CL, Heimburg-Molinaro J, Arthur CM, Stowell SR, Smith DF, Hughey RP (2011) Identification and characterization of endogenous galectins expressed in Madin Darby canine kidney cells. J Biol Chem 286(8):6780–6790. doi:10.1074/jbc.M110.179002 PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676. doi:10.1093/glycob/cwm026 PubMedCrossRefGoogle Scholar
  14. 14.
    Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, Smith DF, Cummings RD (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16(3):295–301. doi:10.1038/nm.2103 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA (2011) Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 31(1):10–21. doi:10.1007/s10875-010-9494-2 PubMedCrossRefGoogle Scholar
  16. 16.
    Kohatsu L, Hsu DK, Jegalian AG, Liu FT, Baum LG (2006) Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J Immunol 177(7):4718–4726PubMedCrossRefGoogle Scholar
  17. 17.
    Arthur CM, Cummings RD, Stowell SR (2014) Using glycan microarrays to understand immunity. Curr Opin Chem Biol 18C:55–61. doi:10.1016/j.cbpa.2013.12.017 CrossRefGoogle Scholar
  18. 18.
    Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10:470–476PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Stowell SR, Winkler AM, Maier CL, Arthur CM, Smith NH, Girard-Pierce KR, Cummings RD, Zimring JC, Hendrickson JE (2012) Initiation and regulation of complement during hemolytic transfusion reactions. Clin Dev Immunol 2012:307093. doi:10.1155/2012/307093 PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720. doi:10.1038/nri1180 PubMedCrossRefGoogle Scholar
  21. 21.
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395. doi:10.1038/415389a PubMedCrossRefGoogle Scholar
  22. 22.
    Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods 44(2):121–129PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Connie M. Arthur
    • 1
  • Richard D. Cummings
    • 2
  • Sean R. Stowell
    • 3
  1. 1.The Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA
  2. 2.Department of BiochemistryEmory University School of MedicineAtlantaUSA
  3. 3.Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA

Personalised recommendations