Galectins pp 153-167 | Cite as

Examination of the Role of Galectins in Plasma Cell Differentiation

  • Chih-Ming Tsai
  • Kuo-I LinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1207)


Plasma cells are terminally differentiated B cells that develop via the stimulation of mature B cells with various agents such as antigens and mitogens. Recently, we found that plasma cell differentiation can be modulated by galectin-1 and galectin-8; these galectins appear to play additive and redundant roles in promoting the production of antibody. Here, we describe the protocols for how to investigate the roles of galectins in plasma cell differentiation. These methods include the preparation of recombinant galectins from Escherichia coli for exogenously treating primary B cells, generation of galectin_Fcm fusion proteins for determining their binding to B cells, introduction of ectopic galectins in primary B cells using retroviral vectors, and inhibition of the binding of galectins to B cells by synthetic disaccharides.

Key words

Mouse splenic B cells Plasma cell Recombinant galectin Retroviral vector Flow cytometry 


  1. 1.
    Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K et al (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76(4):597–598PubMedCrossRefGoogle Scholar
  2. 2.
    Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2004) Introduction to galectins. Glycoconj J 19(7–9):433–440. doi: 10.1023/B:GLYC.0000014072.34840.04 PubMedGoogle Scholar
  3. 3.
    Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17. doi: 10.1017/s1462399408000719 PubMedCrossRefGoogle Scholar
  4. 4.
    Gauthier L, Rossi B, Roux F, Termine E, Schiff C (2002) Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc Natl Acad Sci U S A 99(20):13014–13019. doi: 10.1073/pnas.202323999 PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Rossi B, Espeli M, Schiff C, Gauthier L (2006) Clustering of pre-B cell integrins induces galectin-1-dependent pre-B cell receptor relocalization and activation. J Immunol 177(2):796–803PubMedCrossRefGoogle Scholar
  6. 6.
    Espeli M, Mancini SJ, Breton C, Poirier F, Schiff C (2009) Impaired B-cell development at the pre-BII-cell stage in galectin-1-deficient mice due to inefficient pre-BII/stromal cell interactions. Blood 113(23):5878–5886. doi: 10.1182/blood-2009-01-198465 PubMedCrossRefGoogle Scholar
  7. 7.
    Zuniga E, Rabinovich GA, Iglesias MM, Gruppi A (2001) Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J Leukoc Biol 70(1):73–79PubMedGoogle Scholar
  8. 8.
    Hoyer KK, Pang M, Gui D, Shintaku IP, Kuwabara I, Liu FT, Said JW, Baum LG, Teitell MA (2004) An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol 164(3):893–902. doi: 10.1016/s0002-9440(10)63177-x PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Acosta-Rodriguez EV, Montes CL, Motran CC, Zuniga EI, Liu FT, Rabinovich GA, Gruppi A (2004) Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection. J Immunol 172(1):493–502PubMedCrossRefGoogle Scholar
  10. 10.
    Oliveira FL, Chammas R, Ricon L, Fermino ML, Bernardes ES, Hsu DK, Liu FT, Borojevic R, El-Cheikh MC (2009) Galectin-3 regulates peritoneal B1-cell differentiation into plasma cells. Glycobiology 19(11):1248–1258. doi: 10.1093/glycob/cwp120 PubMedCrossRefGoogle Scholar
  11. 11.
    Tsai CM, Guan CH, Hsieh HW, Hsu TL, Tu Z, Wu KJ, Lin CH, Lin KI (2011) Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. J Immunol 187(4):1643–1652. doi: 10.4049/jimmunol.1100297 PubMedCrossRefGoogle Scholar
  12. 12.
    Tsai CM, Chiu YK, Hsu TL, Lin IY, Hsieh SL, Lin KI (2008) Galectin-1 promotes immunoglobulin production during plasma cell differentiation. J Immunol 181(7):4570–4579PubMedCrossRefGoogle Scholar
  13. 13.
    Pace KE, Hahn HP, Baum LG (2003) Preparation of recombinant human galectin-1 and use in T-cell death assays. Methods Enzymol 363:499–518. doi: 10.1016/s0076-6879(03)01075-9 PubMedCrossRefGoogle Scholar
  14. 14.
    Costa GL, Benson JM, Seroogy CM, Achacoso P, Fathman CG, Nolan GP (2000) Targeting rare populations of murine antigen-specific T lymphocytes by retroviral transduction for potential application in gene therapy for autoimmune disease. J Immunol 164(7):3581–3590PubMedCrossRefGoogle Scholar
  15. 15.
    Muller AJ, Young JC, Pendergast AM, Pondel M, Landau NR, Littman DR, Witte ON (1991) BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol 11(4):1785–1792PubMedPubMedCentralGoogle Scholar
  16. 16.
    Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267PubMedCrossRefGoogle Scholar
  17. 17.
    Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93(21):11382–11388PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lin KI, Kao YY, Kuo HK, Yang WB, Chou A, Lin HH, Yu AL, Wong CH (2006) Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1. J Biol Chem 281(34):24111–24123. doi: 10.1074/jbc.M601106200 PubMedCrossRefGoogle Scholar
  19. 19.
    Lin KI, Angelin-Duclos C, Kuo TC, Calame K (2002) Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol Cell Biol 22(13):4771–4780PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378(6558):736–739. doi: 10.1038/378736a0 PubMedCrossRefGoogle Scholar
  21. 21.
    Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J, Hernandez JD, Zwirner NW, Poirier F, Riley EM, Baum LG, Rabinovich GA (2007) Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8(8):825–834. doi: 10.1038/ni1482 PubMedCrossRefGoogle Scholar
  22. 22.
    Stowell SR, Karmakar S, Stowell CJ, Dias-Baruffi M, McEver RP, Cummings RD (2007) Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109(1):219–227PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Stowell SR, Karmakar S, Arthur CM, Ju T, Rodrigues LC, Riul TB, Dias-Baruffi M, Miner J, McEver RP, Cummings RD (2009) Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell 20(5):1408–1418PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lin KI, Calame K (2004) Introduction of genes into primary murine splenic B cells using retrovirus vectors. Methods Mol Biol 271:139–148. doi: 10.1385/1-59259-796-3:139 PubMedGoogle Scholar
  25. 25.
    Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Genomics Research CenterAcademia SinicaTaipei 115Taiwan

Personalised recommendations