Fractionation of Non-polyadenylated and Ribosomal-Free RNAs from Mammalian Cells

  • Qing-Fei Yin
  • Ling-Ling ChenEmail author
  • Li YangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1206)


Most of mRNAs and well-characterized long noncoding RNAs are shaped with 5′ cap and 3′ poly(A) tail. Thereby, conventional transcriptome analysis typically involved the enrichment of poly(A)+ RNAs by oligo(dT) selection. However, accumulated lines of evidence suggest that there are many RNA transcripts processed in alternative ways, which largely failed to be detected by oligo(dT) purification. Here, we describe an enrichment strategy to purify non-polyadenylated (poly(A)−/ribo−) RNAs from total RNAs by removal of poly(A)+ RNA transcripts and ribosomal RNAs. In the combination with high-throughput sequencing methods, this strategy has been successfully applied to identify the rich repertoire of non-polyadenylated RNAs in vivo.

Key words

RNA fractionation Non-polyadenylated RNAs Long noncoding RNAs Deep sequencing 



We are grateful to H.-H. Fang and other lab members for helpful discussion to improve this protocol. This work was supported by grants XDA01010206 and 2012OHTP08 from CAS, and 31271376 and 31271390 from NSFC to LLC and LY.


  1. 1.
    Moore MJ, Proudfoot NJ (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688–700PubMedCrossRefGoogle Scholar
  2. 2.
    Manley JL, Proudfoot NJ, Platt T (1989) RNA 3′-end formation. Genes Dev 3:2218–2244PubMedCrossRefGoogle Scholar
  3. 3.
    Pan Q et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415PubMedCrossRefGoogle Scholar
  4. 4.
    Wang ET et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Li JB et al (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324: 1210–1213PubMedCrossRefGoogle Scholar
  6. 6.
    Wilhelm BT et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453: 1239–1243PubMedCrossRefGoogle Scholar
  7. 7.
    Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9:843–854PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Gu H, Das Gupta J, Schoenberg DR (1999) The poly(A)-limiting element is a conserved cis-acting sequence that regulates poly(A) tail length on nuclear pre-mRNAs. Proc Natl Acad Sci U S A 96:8943–8948PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Meijer HA et al (2007) A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res 35:e132PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cheng J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–5114PubMedCrossRefGoogle Scholar
  11. 11.
    Wu Q et al (2008) Poly A- transcripts expressed in HeLa cells. PLoS One 3:e2803PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Cui P et al (2010) A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics 96:259–265PubMedCrossRefGoogle Scholar
  13. 13.
    Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kim TK et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    De Santa F et al (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Yin QF et al (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48:219–230PubMedCrossRefGoogle Scholar
  17. 17.
    Jeck WR et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338PubMedCrossRefGoogle Scholar
  19. 19.
    Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang Y et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806PubMedCrossRefGoogle Scholar
  21. 21.
    Sunwoo H et al (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wilusz JE et al (2012) A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26:2392–2407PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Brown JA et al (2012) Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc Natl Acad Sci U S A 109:19202–19207PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Yap KL et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gardner EJ et al (2012) Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev 26: 2550–2559PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Yang L et al (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12:R16PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  2. 2.Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina

Personalised recommendations