Skip to main content

Single Yeast Cell Imaging

  • Protocol
  • First Online:
Book cover Yeast Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1205))

Abstract

Microscopic imaging techniques play a pivotal role in the life sciences. Here we describe labeling and imaging methods for live yeast cell imaging. Yeast is an excellent reference organism for biomedical research to investigate fundamental cellular processes, and has gained great popularity also for large-scale imaging-based screens. Methods are described to label live yeast cells with organelle-specific fluorescent dyes or GFP-tagged proteins, and how cells are maintained viable over extended periods of time during microscopy. We point out common pitfalls and potential microscopy artifacts arising from inhomogeneous labeling and depending on cellular physiology. Application and limitation of bleaching techniques to address dynamic processes in the yeast cell are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  PubMed  CAS  Google Scholar 

  2. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Ball G, Parton RM, Hamilton RS et al (2012) A Cell Biologist's Guide to High Resolution Imaging. Methods Enzymol 504:29–55

    Article  PubMed  CAS  Google Scholar 

  4. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Neumann B, Held M, Liebel U et al (2006) High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3:385–390

    Article  PubMed  CAS  Google Scholar 

  6. Wolinski H, Natter K, Kohlwein SD (2009) The fidgety yeast: focus on high-resolution live yeast cell microscopy. Methods Mol Biol 548:75–99

    Article  PubMed  CAS  Google Scholar 

  7. Wolinski H, Kohlwein SD (2008) Microscopic analysis of lipid droplet metabolism and dynamics in yeast. Methods Mol Biol 457:151–163

    Article  PubMed  CAS  Google Scholar 

  8. Fei W, Shui G, Gaeta B et al (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473–482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Li Z, Vizeacoumar FJ, Bahr S et al (2011) Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol 29:361–367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Niu W, Hart GT, Marcotte EM (2011) High-throughput immunofluorescence microscopy using yeast spheroplast cell-based microarrays. Methods Mol Biol 706:83–95

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Saito TL, Ohtani M, Sawai H et al (2004) SCMD: Saccharomyces cerevisiae Morphological Database. Nucleic Acids Res 32:D319–D322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Vizeacoumar FJ, van Dyk N, Vizeacoumar FS et al (2010) Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J Cell Biol 188:69–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Wolinski H, Petrovic U, Mattiazzi M et al (2009) Imaging-based live cell yeast screen identifies novel factors involved in peroxisome assembly. J Proteome Res 8:20–27

    Article  PubMed  CAS  Google Scholar 

  14. Bassett DE Jr, Boguski MS, Hieter P (1996) Yeast genes and human disease. Nature 379:589–590

    Article  PubMed  CAS  Google Scholar 

  15. Kohlwein SD (2000) The beauty of the yeast: live cell microscopy at the limits of optical resolution. Microsc Res Tech 51:511–529

    Article  PubMed  CAS  Google Scholar 

  16. Spandl J, White DJ, Peychl J et al (2009) Live cell multicolor imaging of lipid droplets with a new dye, LD540. Traffic 10:1579–1584

    Article  PubMed  CAS  Google Scholar 

  17. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  PubMed  CAS  Google Scholar 

  18. Ivnitski-Steele I, Holmes AR, Lamping E et al (2009) Identification of Nile red as a fluorescent substrate of the Candida albicans ATP-binding cassette transporters Cdr1p and Cdr2p and the major facilitator superfamily transporter Mdr1p. Anal Biochem 394:87–91

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Martin RM, Leonhardt H, Cardoso MC (2005) DNA labeling in living cells. Cytometry A 67:45–52

    Article  PubMed  Google Scholar 

  20. Rasband WS (2011) Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ .

  21. Snapp EL, Altan N, Lippincott-Schwartz J (2003) Measuring protein mobility by photobleaching GFP chimeras in living cells. Curr Protoc Cell Biol, Chapter 21, Unit 21 21

    Google Scholar 

  22. Weiss M (2004) Challenges and artifacts in quantitative photobleaching experiments. Traffic 5:662–671

    Article  PubMed  CAS  Google Scholar 

  23. Diaspro A, Mazza D, Krol S et al (2005) Quantitative FRAP by means of diffusion through 3D polyelectrolyte shells using confocal and two-photon excitation approaches. Microsc Microanal 11:786–787

    Article  Google Scholar 

  24. Mazza D, Cella F, Vicidomini G et al (2007) Role of three-dimensional bleach distribution in confocal and two-photon fluorescence recovery after photobleaching experiments. Appl Opt 46:7401–7411

    Article  PubMed  CAS  Google Scholar 

  25. Braeckmans K, Stubbe BG, Remaut K et al (2006) Anomalous photobleaching in fluorescence recovery after photobleaching measurements due to excitation saturation–a case study for fluorescein. J Biomed Opt 11:044013

    Article  PubMed  Google Scholar 

  26. Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson's guide to deconvolution in light microscopy. Biotechniques 31:1076–1078, 1080, 1082 passim

    PubMed  CAS  Google Scholar 

  27. Scientific Volume Imaging. Huygens Deconvolution Pro User Manual.

    Google Scholar 

  28. Landmann L (2002) Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques. J Microsc 208:134–147

    Article  PubMed  CAS  Google Scholar 

  29. Centonze V, Pawley JB (2006) Tutorial on practical confocal microscopy and use of the confocal test specimen. In: Pawley JB (ed) Handbook of Biological Confocal Microscopy 627–649. Springer, 3rd ed. 2006

    Google Scholar 

  30. Papadopulos F, Spinelli M, Valente S et al (2007) Common tasks in microscopic and ultrastructural image analysis using ImageJ. Ultrastruct Pathol 31:401–407

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories is supported by grants from the Austrian Science Funds FWF (project SFB Lipotox F3005 and the PhD program Molecular Enzymology W901-B12) and the Austrian Federal Ministry for Science and Research (project GOLD, in the framework of the Austrian Genomics Program, GEN-AU), and by NAWI Graz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepp D. Kohlwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wolinski, H., Kohlwein, S.D. (2014). Single Yeast Cell Imaging. In: Smith, J., Burke, D. (eds) Yeast Genetics. Methods in Molecular Biology, vol 1205. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1363-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1363-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1362-6

  • Online ISBN: 978-1-4939-1363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics