Skip to main content

Synthetic Genetic Array Analysis for Global Mapping of Genetic Networks in Yeast

  • Protocol
  • First Online:
Book cover Yeast Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1205))

Abstract

Genetic interactions occur when mutant alleles of two or more genes collaborate to generate an unusual composite phenotype, one that would not be predicted based on the expected combined effects of the individual mutant alleles. Synthetic Genetic Array (SGA) methodology was developed to automate yeast genetic analysis and enable systematic genetic interaction studies. In its simplest form, SGA consists of a series of replica pinning steps, which enable the construction of haploid double mutants through mating and meiotic recombination. For example, a strain carrying a query mutation, such as a deletion allele of a nonessential gene or a conditional temperature sensitive allele of an essential gene, could be crossed to an input array of yeast mutants, such as the complete set of ~5,000 viable deletion mutants, to generate an output array of double mutants, that can be scored for genetic interactions based on estimates of cellular fitness derived from colony-size measurements. A simple quantitative measure of genetic interactions can be derived from colony size, which serves as a proxy for fitness. Furthermore, SGA can be applied in a variety of other contexts, such as Synthetic Dosage Lethality (SDL), in which a query mutation is crossed into an array of yeast strains, each of which overexpresses a different gene, thus making use of SGA to probe for gain-of-function phenotypes in specific genetic backgrounds. High-Content Screening (HCS) also integrates SGA to perform genome-wide screens for quantitative analysis of morphological phenotypes or pathway activity based upon fluorescent markers, extending genetic interaction analysis beyond fitness-based measurements. Genetic interaction studies offer insight into gene function, pathway structure, and buffering, and thus a complete genetic interaction network of yeast will generate a global functional wiring diagram for a eukaryotic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington CH (1957) The strategy of the gene. Allen and Unwin, London

    Google Scholar 

  2. Hartman JL IV, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291:1001–1004

    Article  PubMed  CAS  Google Scholar 

  3. Zuk O, Hechter E, Sunyaev SR et al (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A 109:1193–1198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Tong AH, Lesage G, Bader GD et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  PubMed  CAS  Google Scholar 

  5. Costanzo M, Baryshnikova A, Myers CL et al (2011) Charting the genetic interaction map of a cell. Curr Opin Biotechnol 22:66–74

    Article  PubMed  CAS  Google Scholar 

  6. Tong AH, Evangelista M, Parsons AB et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  PubMed  CAS  Google Scholar 

  7. Bateson WRSE, Punnett RC, Hurst CC (1905) Reports to the Evolution Committee of the Royal Society, report II. Harrison and Sons, London

    Google Scholar 

  8. Dixon SJ, Costanzo M, Baryshnikova A et al (2009) Systematic mapping of genetic interaction networks. Annu Rev Genet 43:601–625

    Article  PubMed  CAS  Google Scholar 

  9. Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  PubMed  CAS  Google Scholar 

  10. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  11. Li Z, Vizeacoumar FJ, Bahr S et al (2011) Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol 29:361–367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ben-Aroya S, Coombes C, Kwok T et al (2008) Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell 30:248–258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Mnaimneh S, Davierwala AP, Haynes J et al (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118:31–44

    Article  PubMed  CAS  Google Scholar 

  14. Schuldiner M, Collins SR, Thompson NJ et al (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123:507–519

    Article  PubMed  CAS  Google Scholar 

  15. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449

    Article  PubMed  CAS  Google Scholar 

  16. Baryshnikova A, Costanzo M, Kim Y et al (2010) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7:1017–1024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Costanzo M, Baryshnikova A, Bellay J et al (2010) The genetic landscape of a cell. Science 327:425–431

    Article  PubMed  CAS  Google Scholar 

  18. Sharifpoor S, van Dyk D, Costanzo M et al (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22:791–801

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Sopko R, Huang D, Preston N et al (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21:319–330

    Article  PubMed  CAS  Google Scholar 

  20. Magtanong L, Ho CH, Barker SL et al (2011) Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. Nat Biotechnol 29:505–511

    Article  PubMed  CAS  Google Scholar 

  21. Vizeacoumar FJ, van Dyk N, Vizeacoumar FS et al (2010) Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J Cell Biol 188:69–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Costanzo M, Boone C (2009) SGAM: an array-based approach for high-resolution genetic mapping in Saccharomyces cerevisiae. Methods Mol Biol 548:37–53

    Article  PubMed  CAS  Google Scholar 

  23. Zou J, Friesen H, Larson J et al (2009) Regulation of cell polarity through phosphorylation of Bni4 by Pho85 G1 cyclin-dependent kinases in Saccharomyces cerevisiae. Mol Biol Cell 20:3239–3250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Tong AH, Boone C (2007) High-throughput strain construction and systematic synthetic lethal screening in Saccharomyces cerevisiae. In: Stansfield I, Stark MJR (Series Editor) Methods in microbiology, vol. 36. Elsevier, Amsterdam. pp. 369–386

    Google Scholar 

  25. Mani R, St Onge RP, Hartman JL IV et al (2008) Defining genetic interaction. Proc Natl Acad Sci U S A 105:3461–3466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Koh JL, Ding H, Costanzo M et al (2007) DRYGIN: a database of quantitative genetic interaction networks in yeast. Nucleic Acids Res 38:D502–D507

    Article  Google Scholar 

  27. Wagih O, Usaj M, Baryshnikova A et al (2013) SGAtools: one-stop analysis and visualization of array-based genetic interaction screens. Nucleic Acids Res 41(Web Server issue):W591–W596

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670

    Article  PubMed  CAS  Google Scholar 

  30. Carpenter AE (2007) Image-based chemical screening. Nat Chem Biol 3:461–465

    Article  PubMed  CAS  Google Scholar 

  31. Douglas AC, Smith AM, Sharifpoor S et al (2012) Functional analysis with a barcoder yeast gene overexpression system. G3 (Bethesda) 2:1279–1289

    Article  CAS  Google Scholar 

  32. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Boone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kuzmin, E. et al. (2014). Synthetic Genetic Array Analysis for Global Mapping of Genetic Networks in Yeast. In: Smith, J., Burke, D. (eds) Yeast Genetics. Methods in Molecular Biology, vol 1205. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1363-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1363-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1362-6

  • Online ISBN: 978-1-4939-1363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics