Zebrafish Embryos as a Model to Study Bacterial Virulence

  • Jennifer Mesureur
  • Annette C. VergunstEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1197)


In recent years the zebrafish has gained enormous attention in infection biology, and many protocols have been developed to study interaction of both human and fish pathogens, including viruses, fungi, and bacteria, with the host. Especially the extraordinary possibilities for live imaging of disease processes in the transparent embryos using fluorescent bacteria and cell-specific reporter fish combined with gene knockdown, transcriptome, and genetic studies have dramatically advanced our understanding of disease mechanisms. The zebrafish embryo is amenable to study virulence of both extracellular and facultative intracellular pathogens introduced through the technique of microinjection. Several protocols have been published that address the different sites of injection, antisense strategies, imaging, and production of transgenic fish in detail. Here we describe a protocol to study the virulence profiles, ranging from acute fatal to persistent, of bacteria belonging to the Burkholderia cepacia complex. This standard operating protocol combines simple survival assays, analysis of bacterial kinetics, analysis of the early innate immune response with qRT-PCR, and the use of transgenic reporter fish to study interactions with host phagocytes, and is also applicable to other pathogens.

Key words

Zebrafish Burkholderia cepacia complex Burkholderia cenocepacia Bacterial virulence Intracellular bacteria Infection profiles 



The authors would like to thank Nicolas Cubedo (INSERM, UMR_S710, Montpellier, France), Georges Lutfalla (CNRS, UMR5235 Montpellier, France), Annemarie Meijer, Erica Benard, and Michiel van der Vaart (Institute of Biology Leiden, The Netherlands) for helpful suggestions and discussion. U1047 was supported by the region Languedoc-Roussillon, INSERM, and the Université de Montpellier 1. AV was supported by grants from FRM, the region Languedoc-Roussillon (“Chercheur d’Avenir”), and the Marie-Curie Initial Training Network FishForPharma (PITN-GA-2011-289209). JM was supported by a grant from the French Ministry of Higher Education and Research.


  1. 1.
    Drevinek P, Mahenthiralingam E (2010) Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16(7): 821–830PubMedCrossRefGoogle Scholar
  2. 2.
    Holden MTG, Seth-Smith HMB, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM et al (2009) The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191(1): 261–277PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Varga JJ, Losada L, Zelazny AM, Kim M, McCorrison J, Brinkac L et al (2013) Draft genome sequences of Burkholderia cenocepacia ET12 lineage strains K56-2 and BC7. Genome Announc 1(5):pii: e00841–13CrossRefGoogle Scholar
  4. 4.
    Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C (1999) Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N(5)-oxygenase. Infect Immun 67(9):4443–4455PubMedCentralPubMedGoogle Scholar
  5. 5.
    Starke JR, Edwards MS, Langston C, Baker CJ (1987) A mouse model of chronic pulmonary infection with Pseudomonas aeruginosa and Pseudomonas cepacia. Pediatr Res 22(6): 698–702PubMedCrossRefGoogle Scholar
  6. 6.
    Sajjan U, Thanassoulis G, Cherapanov V, Lu A, Sjolin C, Steer B et al (2001) Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr(-/-) mice. Infect Immun 69(8):5138–5150PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chu KK, Davidson DJ, Halsey TK, Chung JW, Speert DP (2002) Differential persistence among genomovars of the Burkholderia cepacia complex in a murine model of pulmonary infection. Infect Immun 70(5):2715–2720PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Uehlinger S, Schwager S, Bernier SP, Riedel K, Nguyen DT, Sokol PA et al (2009) Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect Immun 77(9):4102–4110PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Castonguay-Vanier J, Vial L, Tremblay J, Déziel E (2010) Drosophila melanogaster as a model host for the Burkholderia cepacia complex. PLoS One 5(7):e11467PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Köthe M, Antl M, Huber B, Stoecker K, Ebrecht D, Steinmetz I et al (2003) Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5(5):343–351PubMedCrossRefGoogle Scholar
  11. 11.
    Vergunst AC, Meijer AH, Renshaw SA, O’Callaghan D (2010) Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun 78(4):1495–1508PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Deng Y, Boon C, Eberl L, Zhang L-H (2009) Differential modulation of Burkholderia cenocepacia virulence and energy metabolism by the quorum-sensing signal BDSF and its synthase. J Bacteriol 191(23):7270–7278PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Loutet SA, Valvano MA (2010) A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun 78(10):4088–4100PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Meijer AH, Spaink HP (2011) Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 12(7): 1000–1017PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L (2002) Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17(6):693–702PubMedCrossRefGoogle Scholar
  16. 16.
    Van Der Sar AM, Musters RJP, Van Eeden FJM, Appelmelk BJ, Vandenbroucke-grauls CMJE, Bitter W (2003) Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5:601–611PubMedCrossRefGoogle Scholar
  17. 17.
    Levraud J-P, Disson O, Kissa K, Bonne I, Cossart P, Herbomel P et al (2009) Real-time observation of listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infect Immun 77(9):3651–3660PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Renshaw SA, Loynes CA, Trushell DMI, Elworthy S, Ingham PW, Whyte MKB (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108(13):3976–3978PubMedCrossRefGoogle Scholar
  19. 19.
    Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4):e49–e56PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Renshaw SA, Trede NS (2012) A model 450 million years in the making : zebrafish and vertebrate immunity. Perspective 47:38–47Google Scholar
  21. 21.
    Palti Y (2011) Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol 35(12):1263–1272PubMedCrossRefGoogle Scholar
  22. 22.
    Sullivan C, Kim CH (2008) Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 25(4):341–350PubMedCrossRefGoogle Scholar
  23. 23.
    Van der Vaart M, Spaink HP, Meijer AH (2012) Pathogen recognition and activation of the innate immune response in zebrafish. Adv Hematol 2012:1–19CrossRefGoogle Scholar
  24. 24.
    Carvalho R, de Sonneville J, Stockhammer OW, Savage NDL, Veneman WJ, Ottenhoff THM et al (2011) A high-throughput screen for tuberculosis progression. PLoS One 6(2): e16779PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Nasevicius A, Ekker SC (2000) Effective targeted gene “knockdown” in zebrafish. Nat Genet 26(2):216–220PubMedCrossRefGoogle Scholar
  26. 26.
    Van Der Sar AM, Stockhammer OW, Van Der Laan C, Spaink HP, Bitter W, Meijer AH (2006) MyD88 innate immune function in a zebrafish embryo infection model. Infect Immun 74(4):2436–2441PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Peng K-C, Pan C-Y, Chou H-N, Chen J-Y (2010) Using an improved Tol2 transposon system to produce transgenic zebrafish with epinecidin-1 which enhanced resistance to bacterial infection. Fish Shellfish Immunol 28(5–6):905–917PubMedCrossRefGoogle Scholar
  28. 28.
    Clark KJ, Urban MD, Skuster KJ, Ekker SC (2011) Transgenic zebrafish using transposable elements. Methods Cell Biol 104:137–149PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Stockhammer OW, Zakrzewska A, Hegedûs Z, Spaink HP, Meijer AH (2009) Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J Immunol 182(9):5641–5653PubMedCrossRefGoogle Scholar
  30. 30.
    Hegedus Z, Zakrzewska A, Agoston VC, Ordas A, Rácz P, Mink M et al (2009) Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol Immunol 46(15):2918–2930PubMedCrossRefGoogle Scholar
  31. 31.
    Meijer AH, Verbeek FJ, Salas-Vidal E, Corredor-Adámez M, Bussman J, van der Sar AM et al (2005) Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Mol Immunol 42(10):1185–1203PubMedCrossRefGoogle Scholar
  32. 32.
    Encinas P, Rodriguez-Milla MA, Novoa B, Estepa A, Figueras A, Coll J (2010) Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach. BMC Genom 11:518CrossRefGoogle Scholar
  33. 33.
    Benard EL, van der Sar AM, Ellett F, Lieschke GJ, Spaink HP, Meijer AH (2012) Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp 61:pii: 3781Google Scholar
  34. 34.
    Levraud J-P, Colucci-Guyon E, Redd MJ, Lutfalla G, Herbomel P (2008) In vivo analysis of zebrafish innate immunity. Methods Mol Biol 415:337–363PubMedGoogle Scholar
  35. 35.
    Cui C, Benard EL, Kanwal Z, Stockhammer OW, van der Vaart M, Zakrzewska A et al (2011) Infectious disease modeling and innate immune function in zebrafish embryos. Methods Cell Biol 105:273–308PubMedCrossRefGoogle Scholar
  36. 36.
    Nuesslein-Volhard C, Dahm R (eds) (2002) Zebrafish : a practical approach. Oxford University Press, New York, NYGoogle Scholar
  37. 37.
    Lamason RL, Mohideen M-APK, Mest JR, Wong AC, Norton HL, Aros MC et al (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310(5755):1782–1786PubMedCrossRefGoogle Scholar
  38. 38.
    Bohnsack BL, Gallina D, Kahana A (2011) Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling. PLoS One 6(8):e22991PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Ellett F, Lieschke GJ (2012) Computational quantification of fluorescent leukocyte numbers in zebrafish embryos. Methods Enzymol 506: 425–435PubMedCrossRefGoogle Scholar
  40. 40.
    Brannon MK, Davis JM, Mathias JR, Hall CJ, Emerson JC, Crosier PS et al (2009) Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cell Microbiol 11:755–768Google Scholar
  41. 41.
    Prajsnar TK, Cunliffe VT, Foster SJ, Renshaw SA (2008) A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cell Microbiol 10(11): 2312–2325PubMedCrossRefGoogle Scholar
  42. 42.
    Clatworthy AE, Lee JS-W, Leibman M, Kostun Z, Davidson AJ, Hung DT (2009) Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect Immun 77(4):1293–1303PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3): 253–310PubMedCrossRefGoogle Scholar
  44. 44.
    Colucci-Guyon E, Tinevez J-Y, Renshaw SA, Herbomel P (2011) Strategies of professional phagocytes in vivo: unlike macrophages, neutrophils engulf only surface-associated microbes. J Cell Sci 24:3053–3059CrossRefGoogle Scholar
  45. 45.
    Alibaud L, Rombouts Y, Trivelli X, Burguière A, Cirillo SLG, Cirillo JD et al (2011) A mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. Mol Microbiol 80(4):919–934PubMedCrossRefGoogle Scholar
  46. 46.
    Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.INSERM, U1047NîmesFrance
  2. 2.Université Montpellier 1, UFR MédecineNîmesFrance

Personalised recommendations