Methods of Discovery-Based and Targeted Metabolite Analysis by Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry Detection

  • Luke C. Marney
  • Jamin C. Hoggard
  • Kristen J. Skogerboe
  • Robert E. SynovecEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1198)


The investigation of naturally volatile and derivatized metabolites in biological tissues by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) can provide highly complex and information-rich data for comprehensive metabolomics analysis. The addition of the second separation dimension with GC × GC provides additional chemical selectivity, and the fast scanning time of TOFMS offers benefits in chemical selectivity and overall peak capacity compared to traditional one-dimensional (1D) GC. Furthermore, methods of derivatization to facilitate volatility and thermal stability, the most prominent being the silylation of organic compounds, have extended the use of GC as an important metabolomics tool. The highly information-rich data from GC × GC-TOFMS benefits from sophisticated comprehensive targeted and nontargeted algorithmic software methods. Herein, we detail a robust derivatization and instrumental method for metabolomics analysis and provide a brief overview of possible methods for data analysis.

Key words

GC × GC-TOFMS GC-MS Metabolomics Clostridium acetobutylicum 


  1. 1.
    Snyder LR, Hoggard JC, Montine TJ, Synovec RE (2010) Development and application of a comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of L-beta-methylamino-alanine (BMAA) in human tissue. J Chromatogr A 1217:4639–4647PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Snyder LR, Cruz-Aguado R, Sadilek M, Galasko D, Shaw CA, Montine TJ (2009) Parkinson-dementia complex and development of a new stable isotope dilution assay for BMAA detection in tissue. Toxicol Appl Pharmacol 240:180–188PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Rocha SM, Caldeira M, Carrola J, Santos M, Cruz N, Duarte IF (2012) Exploring the human urine metabolomic potentialities by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A 1252:155–163PubMedCrossRefGoogle Scholar
  4. 4.
    Beckstrom A, Humston E, Snyder L, Synovec R, Juul S (2011) Application of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method to identify potential biomarkers of perinatal asphyxia in a non-human primate model. J Chromatogr A 1218:1899–1906PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Beckstrom AC, Tanya P, Humston EM, Snyder LR, Synovec RE, Juul SE (2012) The perinatal transition of the circulating metabolome in a nonhuman primate. Pediatr Res 71:338–344PubMedCrossRefGoogle Scholar
  6. 6.
    Welthagen W, Shellie RA, Spranger J, Ristow M, Zimmermann R, Fiehn O (2005) Comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC–TOFMS) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1:65–73CrossRefGoogle Scholar
  7. 7.
    Marney LC, Kolwicz SC, Tian R, Synovec RE (2013) Sample Preparation Methodology for mouse heart metabolomics using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Talanta 108:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Yang S, Sadilek M, Synovec RE, Lidstrom ME (2009) Liquid chromatography–tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. J Chromatogr A 1216:3280–3289PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Mohler RE, Dombek KM, Hoggard JC, Pierce KM, Young ET, Synovec RE (2007) Comprehensive analysis of yeast metabolite GC × GC–TOFMS data: combining discovery-mode and deconvolution chemometric software. Analyst 132:756–767PubMedCrossRefGoogle Scholar
  10. 10.
    Humston EM, Dombek KM, Tu BP, Young ET, Synovec RE (2011) Toward a global analysis of metabolites in regulatory mutants of yeast. Anal Bioanal Chem 401:2387–2402PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Pierce KM, Hope JL, Hoggard JC, Synovec RE (2006) A principal component analysis based method to discover chemical differences in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC–TOFMS) separations of metabolites in plant samples. Talanta 70:797–804PubMedCrossRefGoogle Scholar
  12. 12.
    Humston EM, Knowles JD, McShea A, Synovec RE (2010) Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. J Chromatogr A 1217:1963–1970PubMedCrossRefGoogle Scholar
  13. 13.
    Humston EM, Zhang Y, Brabeck GF, McShea A, Synovec RE (2009) Development of a GC × GC–TOFMS method using SPME to determine volatile compounds in cacao beans. J Sep Sci 32:2289–2295PubMedCrossRefGoogle Scholar
  14. 14.
    Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044PubMedCrossRefGoogle Scholar
  15. 15.
    Ewald JC, Heux S, Zamboni N (2009) High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Anal Chem 81:3623–3629PubMedCrossRefGoogle Scholar
  16. 16.
    Little JL (1999) Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. J Chromatogr A 844:1–22PubMedCrossRefGoogle Scholar
  17. 17.
    Kanani H, Chrysanthopoulos PK, Klapa MI (2008) Standardizing GC–MS metabolomics. J Chromatogr B 871:191–201CrossRefGoogle Scholar
  18. 18.
    Pierce E (1968) Silylation of Organic Compounds. Pierce Chemical Co, Rockford, ILGoogle Scholar
  19. 19.
    Wilson RB, Hoggard JC, Synovec RE (2012) Fast, high peak capacity separations in gas chromatography–time-of-flight mass spectrometry. Anal Chem 84:4167–4173PubMedCrossRefGoogle Scholar
  20. 20.
    Fitz BD, Wilson RB, Parsons BA, Hoggard JC, Synovec RE (2012) Fast, high peak capacity separations in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J Chromatogr A 1266:116–123PubMedCrossRefGoogle Scholar
  21. 21.
    Liu Z, Zhang M, Phillips JBJ (1990) Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. Chromatogr Sci 28:567–571CrossRefGoogle Scholar
  22. 22.
    Bailey HP, Rutan SC, Carr PW (2011) Factors that affect quantification of diode array data in comprehensive two-dimensional liquid chromatography using chemometric data analysis. J Chromatogr A 1218:8411–8422PubMedCrossRefGoogle Scholar
  23. 23.
    Mondello L, Herrero M, Kumm T, Dugo P, Cortes H, Dugo G (2008) Quantification in Comprehensive Two-Dimensional Liquid Chromatography. Anal Chem 80:5418–5424PubMedCrossRefGoogle Scholar
  24. 24.
    Hoggard JC, Synovec RE (2007) Parallel Factor Analysis (PARAFAC) of Target Analytes in GC × GC − TOFMS Data: Automated Selection of a Model with an Appropriate Number of Factors. Anal Chem 79:1611–1619PubMedCrossRefGoogle Scholar
  25. 25.
    Tobias HJ, Sacks GL, Zhang Y, Brenna JT (2008) Comprehensive Two-Dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry. Anal Chem 80:8613–8621PubMedCrossRefGoogle Scholar
  26. 26.
    Fraga CG, Prazen BJ, Synovec RE (2001) Objective data alignment and chemometric analysis of comprehensive two-dimensional separations with run-to-run peak shifting on both dimensions. Anal Chem 73:5833–5840PubMedCrossRefGoogle Scholar
  27. 27.
    Pierce KM, Kehimkar B, Marney LC, Hoggard JC, Synovec RE (2012) Review of chemometric analysis techniques for comprehensive two dimensional separations data. J Chromatogr A 1255:3–11PubMedCrossRefGoogle Scholar
  28. 28.
    Servinsky MD, Kiel JT, Dupuy NF, Sund CJ (2010) Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology 156:3478–3491PubMedCrossRefGoogle Scholar
  29. 29.
    van-der-Klift EJC, vivó-Truyols G, Claassen FW, van-Holthoon FL, Van-Beek TA (2008) Comprehensive two-dimensional liquid chromatography with ultraviolet, evaporative light scattering and mass spectrometric detection of triacylglycerols in corn oil. J Chromatogr A 1178:43–55PubMedCrossRefGoogle Scholar
  30. 30.
    Shin MH, Lee DY, Liu K-H, Fiehn O, Kim KH (2010) Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Anal Chem 82:6660–6666PubMedCrossRefGoogle Scholar
  31. 31.
    Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81:7379–7389PubMedCrossRefGoogle Scholar
  32. 32.
    Alvarez-Sanchez B, Priego-Capote F, Luque de Castro L (2010) Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal Chem 29:120–126CrossRefGoogle Scholar
  33. 33.
    Hutschenreuther A, Kiontke A, Kirkenmeier G, Birkemeyer C (2012) Comparison of extraction conditions and normalization approaches for cellular metabolomics of adherent growing cells with GC-MS. Anal Methods 4:1953–1963CrossRefGoogle Scholar
  34. 34.
    Huang XD, Regnier FE (2008) Differential metabolomics using stable isotope labeling and two-dimensional gas chromatography, with time-of-flight mass spectrometry. Anal Chem 80:107–114PubMedCrossRefGoogle Scholar
  35. 35.
    Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72:3573–3580PubMedCrossRefGoogle Scholar
  36. 36.
    Pasikanti KK, Ho PC, Chan ECY (2008) Development and validation of a gas chromatography/mass spectrometry metabonomic platform for the global profiling of urinary metabolites. Rapid Commun Mass Spectrom 22:2984–2992PubMedCrossRefGoogle Scholar
  37. 37.
    Gröger T, Zimmermann R (2011) Application of parallel computing to speed up chemometrics for GC × GC–TOFMS based metabolic fingerprinting. Talanta 83:1289–1294PubMedCrossRefGoogle Scholar
  38. 38.
    Johnson KJ, Synovec RE (2002) Pattern recognition of jet fuels: comprehensive GC × GC with ANOVA-based feature selection and principal component analysis. J Chemom Intell Lab Syst 60:225–237CrossRefGoogle Scholar
  39. 39.
    Johanningsmeier SD, McFeeters RF (2011) Detection of Volatile Spoilage Metabolites in Fermented Cucumbers Using Nontargeted, Comprehensive 2-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GC × GC–TOFMS). J Food Sci 76:C168–C177PubMedCrossRefGoogle Scholar
  40. 40.
    Indrasti D, Che Man YB, Chin ST, Mustafa S, Mat Hashim D, Abdul Manaf M (2010) Regiospecific Analysis of Mono- and Diglycerides in Glycerolysis Products by GC × GC– TOFMS. J Am Oil Chem Soc 87:1255–1262CrossRefGoogle Scholar
  41. 41.
    Stanimirova I, Üstün B, Cajka T, Riddelova K, Hajslova J, Buydens LMC, Walczak B (2010) Tracing the geographical origin of honeys using the GC × GC–MS and pattern recognition techniques. Food Chem 118:171–176CrossRefGoogle Scholar
  42. 42.
    Chin ST, Che Man YB, Tan CP, Hashim DM (2009) Rapid profiling of animal-derived fatty acids using fast GC × GC coupled to time-of-flight mass spectrometry. J Am Oil Chem Soc 86:949–958CrossRefGoogle Scholar
  43. 43.
    Ma C, Wang H, Lu X, Wang H, Xu G, Liu B (2009) Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics 5:497–506CrossRefGoogle Scholar
  44. 44.
    Hoggard JC, Synovec RE (2008) Automated resolution of nontarget analyte signals in GC × GC–TOFMS data using parallel factor analysis. Anal Chem 80:6677–6688PubMedCrossRefGoogle Scholar
  45. 45.
    Wang B, Fang A, Heim J, Bogdanov B, Pugh S, Libardoni M, Zhang X (2010) DISCO: distance and spectrum correlation optimization alignment for two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics. Anal Chem 82:5069–5081PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kim S, Koo I, Fang A, Zhang X (2011) Smith-Waterman peak alignment for comprehensive two-dimensional gas chromatography-mass spectrometry. BMC Bioinformatics 12:235–246PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Oh C, Huang X, Regnier F, Buck C, Zhang X (2008) Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry peak sorting algorithm. J Chromatogr A 1179:205–215PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kempa S, Hummel J, Schwemmer T, Pietzke M, Strehmel N, Wienkoop S, Kopka J, Weckwerth W (2009) An automated GC × GC–TOFMS protocol for batch-wise extraction and alignment of mass isotopomer matrixes from differential 13C-labelling experiments: a case study for photoautotrophic-mixotrophic grown Chlamydomonas reinhardtii cells. J Basic Microbiol 49:82–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Luke C. Marney
    • 1
  • Jamin C. Hoggard
    • 1
  • Kristen J. Skogerboe
    • 2
  • Robert E. Synovec
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA
  2. 2.Department of ChemistrySeattle UniversitySeattleUSA

Personalised recommendations