Skip to main content

LC-MS Profiling to Link Metabolic and Phenotypic Diversity in Plant Mapping Populations

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1198))

Abstract

Numerous studies have revealed the extent of genetic, phenotypic, and metabolic variation between different plant cultivars/varieties. We present a specialized protocol for large-scale targeted and untargeted metabolite profiling for samples from large plant mapping populations using both reversed-phase and aqueous normal-phase LC-MS. This methodology provides a fast and combined targeted/nontargeted workflow as a powerful tool to discriminate related plant phenotypes and describes methods to combine mass features and agronomic traits to link phenotypic to metabolic traits independent of putative metabolite identities. This easily reproducible analytical strategy, in combination with a sophisticated data processing and analysis workflow, can be applicable to a wide range of plant mapping populations.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alonso-Blanco C, Aarts MGM, Bentsink L et al (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Schauer N, Semel Y, Roessner U et al (2006) Comprehensive metabolite profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–455

    Article  PubMed  CAS  Google Scholar 

  3. Keurentjes JJB, Fu J, Ric de Vos CH et al (2006) The genetics of plant metabolism. Nat Genet 38:842–849

    Article  PubMed  CAS  Google Scholar 

  4. Hill CB, Taylor JD, Edwards J et al (2013) Whole genome mapping of agronomic and metabolic traits to identify novel quantitative trait loci in bread wheat (Triticum aestivum L.) grown in a water-limited environment. Plant Physiol 162:1266–1281

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Sulpice R, Nikoloski Z, Tschoep H et al (2013) Impact of the carbon and nitrogen supply on relationships and connectivity between metabolism and biomass in a broad panel of Arabidopsis accessions. Plant Physiol 162:347–363

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Keurentjes JJB, Koornneef M, Vreugdenhil D (2008) Quantitative genetics in the age of omics. Curr Opin Plant Biol 11:123–128

    Article  PubMed  CAS  Google Scholar 

  7. Nawrocki J, Buszewski B (1988) Influence of silica surface chemistry and structure on the properties, structure and coverage of alkyl-bonded phases for high-performance liquid chromatography. J Chromatogr A 449:1–24

    Article  CAS  Google Scholar 

  8. Callahan DL, De Souza D, Bacic A et al (2009) Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography. J Sep Sci 32:2273–2280

    Article  PubMed  CAS  Google Scholar 

  9. Snyder LR, Kirkland JJ, Dolan JW (eds) (2010) Introduction to modern liquid chromatography, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  10. Theodoridis G, Gika H, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. Trends Anal Chem 27:251–260

    Article  CAS  Google Scholar 

  11. Cubbon S, Bradbury T, Wilson J et al (2007) Hydrophilic interaction chromatography for mass spectrometric metabonomics studies of urine. Anal Chem 79:891–918

    Article  Google Scholar 

  12. Callahan DL, Elliot CE (2013) A workflow from untargeted LC-MS profiling to targeted natural product isolation. In: Roessner U, Dias DA (eds) Metabolomics tools for natural product discovery: methods and protocols, vol 1055. Springer, New York, NY

    Chapter  Google Scholar 

  13. Asíns MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  14. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  PubMed  CAS  Google Scholar 

  15. Carreno-Quintero N, Acharjee A, Maliepaard C et al (2012) Untargeted metabolic quantitative trait loci (mQTL) analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiol 158:1306–1318

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Prinzenberg AE, Barbier H, Salt DE et al (2011) Relationship between growth, growth response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis. Plant Physiol 154:1361–1371

    Article  Google Scholar 

  17. Lisec J, Meyer RC, Steinfath M et al (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 53:960–972

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zanor MI, Rambla J-L, Chaïb J et al (2009) Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. J Exp Bot 60:2139–2154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Villas-Bôas SG (2007) Sampling and sample preparation. In: Villas-Bôas SG, Roessner U, Hansen MAE, Smedsgaard J, Nielsen J (eds) Metabolome analysis - an introduction. John Wiley & Sons, Hoboken, NJ, pp 39–82

    Chapter  Google Scholar 

  20. Sangster T, Major H, Plumb R et al (2006) A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 131:1075–1078

    Article  PubMed  CAS  Google Scholar 

  21. Roessner U, Luedemann A, Brust D et al (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Meyer RC, Steinfath M, Lisec J et al (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:4759–4764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Sulpice R, Trenkamp S, Steinfath M et al (2010) Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions. Plant Cell 22:2872–2893

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Wijetunge CD, Li Z, Saeed I et al (2013) Exploratory analysis of high-throughput metabolomic data. Metabolomics 9:1–10

    Article  Google Scholar 

  25. Steinfath M, Strehmel N, Peters R et al (2010) Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnol J 8:900–911

    Article  PubMed  CAS  Google Scholar 

  26. Taylor J, Verbyla A (2011) R package wgaim: QTL analysis in bi-parental populations using linear mixed models. J Stat Softw 40:1–18

    Google Scholar 

  27. Arends D, Prins P, Jansen RC et al (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992

    Google Scholar 

  28. Fu J, Swertz MA, Keurentjes JJ et al (2007) MetaNetwork: a computational protocol for the genetic study of metabolic networks. Nature Protocols 2:685–694

    Google Scholar 

  29. Van Ooijen JW, Kyazma BV (2009) MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV: Wageningen, Netherlands

    Google Scholar 

  30. Kliebenstein DJ (2007) Metabolomics and plant quantitative trait locus analysis – the optimum genetical genomics platform? In: Nikolau BJ, Wurtele ES (eds) Concepts in plant metabolomics. Springer, Dordrecht, Netherlands, pp 29–44

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council and the Grains Research and Development Corporation, by the South Australian Government, the University of Adelaide, the University of Queensland, and the University of Melbourne, and by a Melbourne International Fee Remission Scholarship, a Melbourne International Research Scholarship, and a University of Melbourne Special Postgraduate Studentship to C.B.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla B. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hill, C.B., Bacic, A., Roessner, U. (2014). LC-MS Profiling to Link Metabolic and Phenotypic Diversity in Plant Mapping Populations. In: Raftery, D. (eds) Mass Spectrometry in Metabolomics. Methods in Molecular Biology, vol 1198. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1258-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1258-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1257-5

  • Online ISBN: 978-1-4939-1258-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics