LC-MS Profiling to Link Metabolic and Phenotypic Diversity in Plant Mapping Populations

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1198)

Abstract

Numerous studies have revealed the extent of genetic, phenotypic, and metabolic variation between different plant cultivars/varieties. We present a specialized protocol for large-scale targeted and untargeted metabolite profiling for samples from large plant mapping populations using both reversed-phase and aqueous normal-phase LC-MS. This methodology provides a fast and combined targeted/nontargeted workflow as a powerful tool to discriminate related plant phenotypes and describes methods to combine mass features and agronomic traits to link phenotypic to metabolic traits independent of putative metabolite identities. This easily reproducible analytical strategy, in combination with a sophisticated data processing and analysis workflow, can be applicable to a wide range of plant mapping populations.

Key words

Liquid chromatography Mass spectrometry Quantitative trait locus mapping Mapping populations Metabolite profiling Metabolic trait Metabolomics Genomics 

References

  1. 1.
    Alonso-Blanco C, Aarts MGM, Bentsink L et al (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Schauer N, Semel Y, Roessner U et al (2006) Comprehensive metabolite profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–455PubMedCrossRefGoogle Scholar
  3. 3.
    Keurentjes JJB, Fu J, Ric de Vos CH et al (2006) The genetics of plant metabolism. Nat Genet 38:842–849PubMedCrossRefGoogle Scholar
  4. 4.
    Hill CB, Taylor JD, Edwards J et al (2013) Whole genome mapping of agronomic and metabolic traits to identify novel quantitative trait loci in bread wheat (Triticum aestivum L.) grown in a water-limited environment. Plant Physiol 162:1266–1281PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sulpice R, Nikoloski Z, Tschoep H et al (2013) Impact of the carbon and nitrogen supply on relationships and connectivity between metabolism and biomass in a broad panel of Arabidopsis accessions. Plant Physiol 162:347–363PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Keurentjes JJB, Koornneef M, Vreugdenhil D (2008) Quantitative genetics in the age of omics. Curr Opin Plant Biol 11:123–128PubMedCrossRefGoogle Scholar
  7. 7.
    Nawrocki J, Buszewski B (1988) Influence of silica surface chemistry and structure on the properties, structure and coverage of alkyl-bonded phases for high-performance liquid chromatography. J Chromatogr A 449:1–24CrossRefGoogle Scholar
  8. 8.
    Callahan DL, De Souza D, Bacic A et al (2009) Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography. J Sep Sci 32:2273–2280PubMedCrossRefGoogle Scholar
  9. 9.
    Snyder LR, Kirkland JJ, Dolan JW (eds) (2010) Introduction to modern liquid chromatography, 3rd edn. Wiley, Hoboken, NJGoogle Scholar
  10. 10.
    Theodoridis G, Gika H, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. Trends Anal Chem 27:251–260CrossRefGoogle Scholar
  11. 11.
    Cubbon S, Bradbury T, Wilson J et al (2007) Hydrophilic interaction chromatography for mass spectrometric metabonomics studies of urine. Anal Chem 79:891–918CrossRefGoogle Scholar
  12. 12.
    Callahan DL, Elliot CE (2013) A workflow from untargeted LC-MS profiling to targeted natural product isolation. In: Roessner U, Dias DA (eds) Metabolomics tools for natural product discovery: methods and protocols, vol 1055. Springer, New York, NYCrossRefGoogle Scholar
  13. 13.
    Asíns MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291CrossRefGoogle Scholar
  14. 14.
    Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52PubMedCrossRefGoogle Scholar
  15. 15.
    Carreno-Quintero N, Acharjee A, Maliepaard C et al (2012) Untargeted metabolic quantitative trait loci (mQTL) analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiol 158:1306–1318PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Prinzenberg AE, Barbier H, Salt DE et al (2011) Relationship between growth, growth response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis. Plant Physiol 154:1361–1371CrossRefGoogle Scholar
  17. 17.
    Lisec J, Meyer RC, Steinfath M et al (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 53:960–972PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zanor MI, Rambla J-L, Chaïb J et al (2009) Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. J Exp Bot 60:2139–2154PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Villas-Bôas SG (2007) Sampling and sample preparation. In: Villas-Bôas SG, Roessner U, Hansen MAE, Smedsgaard J, Nielsen J (eds) Metabolome analysis - an introduction. John Wiley & Sons, Hoboken, NJ, pp 39–82CrossRefGoogle Scholar
  20. 20.
    Sangster T, Major H, Plumb R et al (2006) A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 131:1075–1078PubMedCrossRefGoogle Scholar
  21. 21.
    Roessner U, Luedemann A, Brust D et al (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Meyer RC, Steinfath M, Lisec J et al (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:4759–4764PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sulpice R, Trenkamp S, Steinfath M et al (2010) Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions. Plant Cell 22:2872–2893PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wijetunge CD, Li Z, Saeed I et al (2013) Exploratory analysis of high-throughput metabolomic data. Metabolomics 9:1–10CrossRefGoogle Scholar
  25. 25.
    Steinfath M, Strehmel N, Peters R et al (2010) Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnol J 8:900–911PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor J, Verbyla A (2011) R package wgaim: QTL analysis in bi-parental populations using linear mixed models. J Stat Softw 40:1–18Google Scholar
  27. 27.
    Arends D, Prins P, Jansen RC et al (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992Google Scholar
  28. 28.
    Fu J, Swertz MA, Keurentjes JJ et al (2007) MetaNetwork: a computational protocol for the genetic study of metabolic networks. Nature Protocols 2:685–694Google Scholar
  29. 29.
    Van Ooijen JW, Kyazma BV (2009) MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV: Wageningen, NetherlandsGoogle Scholar
  30. 30.
    Kliebenstein DJ (2007) Metabolomics and plant quantitative trait locus analysis – the optimum genetical genomics platform? In: Nikolau BJ, Wurtele ES (eds) Concepts in plant metabolomics. Springer, Dordrecht, Netherlands, pp 29–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Australian Centre for Plant Functional Genomics (ACPFG), School of BotanyThe University of MelbourneMelbourneAustralia
  2. 2.Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneAustralia
  3. 3.ARC Centre of Excellence in Plant Cell Walls and Metabolomics Australia, School of BotanyThe University of MelbourneMelbourneAustralia

Personalised recommendations