Advertisement

DESI-MS Imaging of Lipids and Metabolites from Biological Samples

  • Livia S. Eberlin
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1198)

Abstract

Desorption electrospray ionization mass spectrometry (DESI-MS) is a powerful technique used to image the distribution of hundreds of small molecules directly from biological samples, without the need of extensive sample preparation. Operated at ambient temperature and in the open-air environment, DESI-MS employs a fine spray of charged droplets to rapidly extract molecules from the sample surface into the solvent droplets and to transfer the analytes to the mass spectrometer. When operated in the imaging mode, a two-dimensional map of the compounds within the sample surface is obtained with a typical spatial resolution of hundreds of micrometers or less. Here, we describe the imaging of complex lipids from a mouse brain tissue section using a histologically compatible solvent system. The imaging experiment described is performed in the negative ion mode using an Orbitrap mass spectrometer for mass analysis. Following DESI-MS imaging, the same tissue section is subjected to histochemistry allowing molecular information to be correlated to histological information.

Key words

Mass spectrometry imaging Lipid analysis Ambient mass spectrometry Mouse brain imaging 

Notes

Acknowledgements

The author acknowledges Dr. Nathaniel L. Sanders for kindly reviewing the content of this book chapter.

References

  1. 1.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473PubMedCrossRefGoogle Scholar
  2. 2.
    Wiseman JM, Ifa DR, Song QY, Cooks RG (2006) Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chemie Int Ed Engl 45:7188–7192CrossRefGoogle Scholar
  3. 3.
    Dill AL, Eberlin LS, Costa AB, Ifa DR, Cooks RG (2011) Data quality in tissue analysis using desorption electrospray ionization. Anal Bioanal Chem 401:1949–1961PubMedCrossRefGoogle Scholar
  4. 4.
    Costa AB, Cooks RG (2007) Simulation of atmospheric transport and droplet-thin film collisions in desorption electrospray ionization. Chem Commun 4:3915–3917Google Scholar
  5. 5.
    Costa AB, Cooks RG (2008) Simulated splashes: elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem Phys Lett 464:1–8CrossRefGoogle Scholar
  6. 6.
    Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cooks RG (2011) Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim Biophys Acta 1811:946–960PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Girod M, Shi YZ, Cheng J, Cooks RG (2011) Mapping lipid alterations in traumatically injured rat spinal cord by desorption electrospray ionization mass spectrometry. Anal Chem 83:207–215PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Watrous J, Hendricks N, Meehan M, Dorrestein PC (2010) Capturing bacterial metabolic exchange using thin film desorption electrospray ionization-imaging mass spectrometry. Anal Chem 82:1598–1600PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wiseman JM, Puolitaival SM, Takats Z, Cooks RG, Caprioli RM (2005) Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew Chemie Int Ed Engl 44:7094–7097CrossRefGoogle Scholar
  10. 10.
    Dill AL et al (2010) Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal Chem 398:2969–2978Google Scholar
  11. 11.
    Dill A et al (2011) Multivariate statistical identification of human bladder carcinomas using ambient ionization imaging mass spectrometry. Chemistry 17:2897–2902PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Eberlin LS et al (2010) Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry. Anal Chem 82:3430–3434PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Eberlin LS et al (2010) Discrimination of human astrocytoma subtypes by lipid analysis using desorption electrospray ionization imaging mass spectrometry. Angew Chemie Int Ed Engl 49:5953–5956CrossRefGoogle Scholar
  14. 14.
    Masterson TA et al (2011) Distinctive glycerophospholipid profiles of human seminoma and adjacent normal tissues by desorption electrospray ionization imaging mass spectrometry. J Am Soc Mass Spectrom 22:1326–1333PubMedCrossRefGoogle Scholar
  15. 15.
    Eberlin LS et al (2011) Non-destructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. Chembiochem 12:2129–2132PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Manicke NE et al (2009) Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal Chem 81:8702–8707PubMedCrossRefGoogle Scholar
  17. 17.
    Jackson AU, Shum T, Sokol E, Dill A, Cooks RG (2011) Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes. Anal Chem 399:367–376Google Scholar
  18. 18.
    Manicke NE, Wiseman JM, Ifa DR, Cooks RG (2008) Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J Am Soc Mass Spectrom 19:531–543PubMedCrossRefGoogle Scholar
  19. 19.
    Wu CP, Ifa DR, Manicke NE, Cooks RG (2009) Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal Chem 81:7618–7624PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Perry RH et al (2012) Transient Ru-methyl formate intermediates generated with bifunctional transfer hydrogenation catalysts. Proc Natl Acad Sci U S A 109:2246–2250PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Manicke NE, Kistler T, Ifa DR, Cooks RG, Ouyang Z (2009) High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 20:321–325PubMedCrossRefGoogle Scholar
  22. 22.
    Ifa DR, Wiseman JM, Song Q, Cooks RG (2007) Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int J Mass Spectrom 259:8–15CrossRefGoogle Scholar
  23. 23.
    Ifa DR et al (2011) Tissue imprint imaging by desorption electrospray ionization mass spectrometry. Anal Methods 3:1910–1912CrossRefGoogle Scholar
  24. 24.
    Mueller T, Oradu S, Ifa DR, Cooks RG, Kraeutler B (2011) Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry. Anal Chem 83:5754–5761CrossRefGoogle Scholar
  25. 25.
    Xiong X et al (2012) Data processing for 3D mass spectrometry imaging. J Am Soc Mass Spectrom 23:1147–1156PubMedCrossRefGoogle Scholar
  26. 26.
    Han XL, Cheng H (2005) Characterization and direct quantitation of cerebroside molecular species from lipid extracts by shotgun lipidomics. J Lipid Res 46:163–175PubMedCrossRefGoogle Scholar
  27. 27.
    Hsu FF, Turk J (2000) Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study. J Am Soc Mass Spectrom 11:986–999PubMedCrossRefGoogle Scholar
  28. 28.
    Hsu FF, Turk J (2001) Studies on phosphatidylglycerol with triple quadrupole tandem mass spectrometry with electrospray ionization: fragmentation processes and structural characterization. J Am Soc Mass Spectrom 12:1036–1043CrossRefGoogle Scholar
  29. 29.
    Berry KAZ, Murphy RC (2004) Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J Am Soc Mass Spectrom 15:1499–1508CrossRefGoogle Scholar
  30. 30.
    Eberlin LS et al (2011) Desorption electrospray ionization then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections. Anal Chem 83:8366–8371PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations