Skip to main content

Metabolite Profiling by Direct Analysis in Real-Time Mass Spectrometry

  • Protocol
  • First Online:
Mass Spectrometry in Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1198))

Abstract

Untargeted metabolite profiling is a discovery tool for the identification of metabolites associated with the responses of perturbations to biological systems, such as a disease. Direct analysis in real-time mass spectrometry (DART MS) promises to be a powerful analytical technique for high-throughput metabolome analysis of human blood sera. Here, we describe the steps involved in untargeted blood sera metabolic profiling experiments using DART MS with two different sample introduction methods: probe-mode and transmission-mode geometries. Information regarding the optimization of different DART parameters that directly affect metabolite desorption and ionization, which thus influence sensitivity, is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson JK, Lindon JC (2008) Systems biology – metabonomics. Nature 455: 1054–1056

    Article  PubMed  CAS  Google Scholar 

  2. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Moco S, Bino RJ, De Vos RCH, Vervoort J (2007) Metabolomics technologies and metabolite identification. Trends Anal Chem 26:855–866

    Article  CAS  Google Scholar 

  4. Dunn W, Erban A, Weber RM, Creek D, Brown M, Breitling R, Hankemeier T, Goodacre R, Neumann S, Kopka J, Viant M (2013) Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 9:44–66

    Article  CAS  Google Scholar 

  5. Harris GA, Galhena AS, Fernandez FM (2011) Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem 83:4508–4538

    Article  PubMed  CAS  Google Scholar 

  6. Monge ME, Harris GA, Dwivedi P, Fernández FM (2013) Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem Rev 113(4):2269–2308. doi:10.1021/cr300309q

    Article  PubMed  CAS  Google Scholar 

  7. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473

    Article  PubMed  CAS  Google Scholar 

  8. Cody RB, Laramee JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302

    Article  PubMed  CAS  Google Scholar 

  9. Cajka T, Riddellova K, Tomaniova M, Hajslova J (2011) Ambient mass spectrometry employing a DART ion source for metabolomic fingerprinting/profiling: a powerful tool for beer origin recognition. Metabolomics 7: 500–508

    Article  CAS  Google Scholar 

  10. Dove ADM, Leisen J, Zhou MS, Byrne JJ, Lim-Hing K, Webb HD, Gelbaum L, Viant MR, Kubanek J, Fernandez FM (2012) Biomarkers of whale shark health: a metabolomic approach. PLoS One 7:e49379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Gu H, Pan Z, Xi B, Asiago V, Musselman B, Raftery D (2011) Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer. Anal Chim Acta 686:57–63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Jones C, Fernandez FM (2013) Transmission mode direct analysis in real time mass spectrometry for fast untargeted metabolic fingerprinting. Rapid Commun Mass Spectrom 27(12):1311–1318

    Article  PubMed  CAS  Google Scholar 

  13. Kim SW, Kim HJ, Kim JH, Kwon YK, Ahn MS, Jang YP, Liu JR (2011) A rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by direct analysis in real-time mass spectrometry. Plant Methods 7:14

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Zhou M, Guan W, Walker LD, Mezencev R, Benigno BB, Gray A, Fernandez FM, McDonald JF (2010) Rapid mass spectrometric metabolic profiling of blood sera detects ovarian cancer with high accuracy. Cancer Epidemiol Biomarkers Prev 19:2262–2271

    Article  PubMed  CAS  Google Scholar 

  15. Zhou M, McDonald JF, Fernandez FM (2010) Optimization of a direct analysis in real time/time-of-flight mass spectrometry method for rapid serum metabolomic fingerprinting. J Am Soc Mass Spectrom 21:68–75

    Article  PubMed  Google Scholar 

  16. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R, Human Serum Metabolome Consortium (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083

    Article  PubMed  CAS  Google Scholar 

  17. Draper J, Lloyd A, Goodacre R, Beckmann M (2013) Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: a review. Metabolomics 9:4–29

    Article  CAS  Google Scholar 

  18. Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS 6: 217–234

    Article  PubMed  CAS  Google Scholar 

  19. Nyadong L, Galhena AS, Fernandez FM (2009) Desorption electrospray/metastable-induced ionization: a flexible multimode ambient ion generation technique. Anal Chem 81:7788–7794

    Article  PubMed  CAS  Google Scholar 

  20. Harris GA, Falcone CE, Fernandez FM (2012) Sensitivity “hot spots” in the direct analysis in real time mass spectrometry of nerve agent simulants. J Am Soc Mass Spectrom 23:153–161

    Article  PubMed  CAS  Google Scholar 

  21. Edison SE, Lin LA, Gamble BM, Wong J, Zhang K (2011) Surface swabbing technique for the rapid screening for pesticides using ambient pressure desorption ionization with high-resolution mass spectrometry. Rapid Commun Mass Spectrom 25:127–139

    Article  PubMed  CAS  Google Scholar 

  22. Chernetsova ES, Bromirski M, Scheibner O, Morlock GE (2012) DART-Orbitrap MS: a novel mass spectrometric approach for the identification of phenolic compounds in propolis. Anal Bioanal Chem 403:2859–2867

    Article  PubMed  CAS  Google Scholar 

  23. Crawford E, Musselman B (2012) Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using direct analysis in real time (DART) coupled to an Exactive benchtop orbitrap mass spectrometer. Anal Bioanal Chem 403:2807–2812

    Article  PubMed  CAS  Google Scholar 

  24. Cajka T, Riddellova K, Zomer P, Mol H, Hajslova J (2011) Direct analysis of dithiocarbamate fungicides in fruit by ambient mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:1372–1382

    Article  PubMed  CAS  Google Scholar 

  25. Self RL, Wu W-H (2012) Rapid qualitative analysis of phthalates added to food and nutraceutical products by direct analysis in real time/orbitrap mass spectrometry. Food Control 25:13–16

    Article  CAS  Google Scholar 

  26. Chernetsova ES, Crawford EA, Shikov AN, Pozharitskaya ON, Makarov VG, Morlock GE (2012) ID-CUBE direct analysis in real time high-resolution mass spectrometry and its capabilities in the identification of phenolic components from the green leaves of Bergenia crassifolia L. Rapid Commun Mass Spectrom 26:1329–1337

    Article  PubMed  CAS  Google Scholar 

  27. Rummel JL, McKenna AM, Marshall AG, Eyler JR, Powell DH (2010) The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis. Rapid Commun Mass Spectrom 24:784–790

    Article  PubMed  CAS  Google Scholar 

  28. Yu S, Crawford E, Tice J, Musselman B, Wu JT (2009) Bioanalysis without sample cleanup or chromatography: the evaluation and initial implementation of direct analysis in real time ionization mass spectrometry for the quantification of drugs in biological matrixes. Anal Chem 81:193–202

    Article  PubMed  CAS  Google Scholar 

  29. Harris GA, Fernandez FM (2009) Simulations and experimental investigation of atmospheric transport in an ambient metastable-induced chemical ionization source. Anal Chem 81: 322–329

    Article  PubMed  CAS  Google Scholar 

  30. Perez JJ, Harris GA, Chipuk JE, Brodbelt JS, Green MD, Hampton CY, Fernandez FM (2010) Transmission-mode direct analysis in real time and desorption electrospray ionization mass spectrometry of insecticide-treated bednets for malaria control. Analyst 135: 712–719

    Article  PubMed  CAS  Google Scholar 

  31. Harris GA, Kwasnik M, Fernández FM (2011) Direct analysis in real time coupled to multiplexed drift tube ion mobility spectrometry for detecting toxic chemicals. Anal Chem 83: 1908–1915

    Article  PubMed  CAS  Google Scholar 

  32. Gu HW, Hu B, Li JQ, Yang SP, Han J, Chen HW (2010) Rapid analysis of aerosol drugs using nano extractive electrospray ionization tandem mass spectrometry. Analyst 135: 1259–1267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from NSF grant CHE-0645094 and an OCRF Program Project Development grant. The authors also thank IonSense, Inc. for useful guidance on initial TM-DART experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo M. Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jones, C.M., Monge, M.E., Fernández, F.M. (2014). Metabolite Profiling by Direct Analysis in Real-Time Mass Spectrometry. In: Raftery, D. (eds) Mass Spectrometry in Metabolomics. Methods in Molecular Biology, vol 1198. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1258-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1258-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1257-5

  • Online ISBN: 978-1-4939-1258-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics