Advertisement

Ultra-Performance Liquid Chromatography-Mass Spectrometry Targeted Profiling of Bile Acids: Application to Serum, Liver Tissue, and Cultured Cells of Different Species

  • Juan Carlos García-Cañaveras
  • María Teresa Donato
  • Agustín Lahoz
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1198)

Abstract

Currently, there is increasing interest in developing accurate methods for the quantitative analysis of bile acids (BAs) in biological samples. We have developed a sensitive, fast, and reproducible UPLC-MRM-MS method for BA profiling in serum, liver tissue, or cultured cells of different species (human, rat, and mouse). This method, validated according to FDA guidelines, allows the quantification of 12 non-conjugated, 8 glycine-conjugated, and 11 taurine-conjugated BAs, using 5 additional deuterated BAs as internal standards in a single analytical run. The main features of this analytical approach are its high sensitivity, low sample requirements, versatility, and comprehensive capacity to profile a considerable number of BAs in samples of different species, which make it a valuable tool with potential applications in many research areas focusing on BAs, particularly in toxicological studies.

Key words

Bile acids Metabolomics Targeted analysis UPLC-MS LC-MS Cholic acid Muricholic acid Conjugated bile acids 

Notes

Acknowledgements

This work has been supported by the Instituto de Salud Carlos III of the Spanish Ministry of Science and Innovation (PI10/00923 and PI11/02942). A.L. is grateful for a Miguel Server contract (CP08/00125) from the Spanish Ministry of Science and Innovation/Instituto de Salud Carlos III. J.C.G.C. is grateful for a predoctoral contract from the Vali + d program of the Conselleria d’Educació (Regional Valencian Ministry of Education).

References

  1. 1.
    Botham KM, Boyd GS (1983) The metabolism of chenodeoxycholic acid to beta-muricholic acid in rat liver. Eur J Biochem 134:191–196PubMedCrossRefGoogle Scholar
  2. 2.
    Eyssen H, De Pauw G, Stragier J, Verhulst A (1983) Cooperative formation of omega-muricholic acid by intestinal microorganisms. Appl Environ Microbiol 45:141–147PubMedPubMedCentralGoogle Scholar
  3. 3.
    Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65: 2461–2483PubMedCrossRefGoogle Scholar
  4. 4.
    Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P (2009) Bile acids as regulatory molecules. J Lipid Res 50:1509–1520PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Khan AA, Chow EC, Porte RJ, Pang KS, Groothuis GM (2010) The role of lithocholic acid in the regulation of bile acid detoxication, synthesis, and transport proteins in rat and human intestine and liver slices. Toxicol In Vitro 25:80–90PubMedCrossRefGoogle Scholar
  7. 7.
    Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2011) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 54: 1263–1272PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Reschly EJ, Krasowski MD (2006) Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr Drug Metab 7: 349–365PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Trottier J, Bialek A, Caron P, Straka RJ, Milkiewicz P, Barbier O (2011) Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. PLoS One 6:e22094PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Want EJ, Coen M, Masson P, Keun HC, Pearce JT, Reily MD, Robertson DG et al (2010) Ultra performance liquid chromatography-mass spectrometry profiling of bile acid metabolites in biofluids: application to experimental toxicology studies. Anal Chem 82:5282–5289PubMedCrossRefGoogle Scholar
  11. 11.
    Yang L, Xiong A, He Y, Wang Z, Wang C, Li W, Hu Z (2008) Bile acids metabonomic study on the CCl4- and alpha-naphthylisothiocyanate-induced animal models: quantitative analysis of 22 bile acids by ultraperformance liquid chromatography-mass spectrometry. Chem Res Toxicol 21:2280–2288PubMedCrossRefGoogle Scholar
  12. 12.
    Trottier J, Bialek A, Caron P, Straka RJ, Heathcote J, Milkiewicz P, Barbier O (2012) Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study. Dig Liver Dis 44:303–310PubMedCrossRefGoogle Scholar
  13. 13.
    Reddy BS, Watanabe K, Weisburger JH, Wynder EL (1977) Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res 37: 3238–3242PubMedGoogle Scholar
  14. 14.
    Garcia-Canaveras JC, Donato MT, Castell JV, Lahoz A (2011) A comprehensive untargeted metabonomic analysis of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals important metabolic alterations. J Proteome Res 10: 4825–4834PubMedCrossRefGoogle Scholar
  15. 15.
    Legido-Quigley C, McDermott L, Vilca-Melendez H, Murphy GM, Heaton N, Lindon JC, Nicholson JK et al (2010) Bile UPLC-MS fingerprinting and bile acid fluxes during human liver transplantation. Electrophoresis 32:2063–2070CrossRefGoogle Scholar
  16. 16.
    Quintas G, Portillo N, García-Cañaveras JC, Castell JV, Ferrer A, Lahoz A (2012) Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool. Metabolomics 8: 86–98CrossRefGoogle Scholar
  17. 17.
    Griffiths WJ, Sjovall J (2010) Bile acids: analysis in biological fluids and tissues. J Lipid Res 51:23–41PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bobeldijk I, Hekman M, de Vries van der Weij J, Coulier L, Ramaker R, Kleemann R, Kooistra T et al (2008) Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: compound class targeting in a metabolomics workflow. J Chromatogr B Analyt Technol Biomed Life Sci 871:306–313PubMedCrossRefGoogle Scholar
  19. 19.
    Steiner C, von Eckardstein A, Rentsch KM (2010) Quantification of the 15 major human bile acids and their precursor 7alpha-hydroxy-4-cholesten-3-one in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:2870–2880PubMedCrossRefGoogle Scholar
  20. 20.
    Huang J, Bathena SP, Csanaky IL, Alnouti Y (2011) Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC-MS/MS. J Pharm Biomed Anal 55:1111–1119PubMedCrossRefGoogle Scholar
  21. 21.
    Alnouti Y, Csanaky IL, Klaassen CD (2008) Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 873:209–217PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ando M, Kaneko T, Watanabe R, Kikuchi S, Goto T, Iida T, Hishinuma T et al (2006) High sensitive analysis of rat serum bile acids by liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 40:1179–1186PubMedCrossRefGoogle Scholar
  23. 23.
    Honda A, Yamashita K, Numazawa M, Ikegami T, Doy M, Matsuzaki Y, Miyazaki H (2007) Highly sensitive quantification of 7alpha-hydroxy-4-cholesten-3-one in human serum by LC-ESI-MS/MS. J Lipid Res 48:458–464PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia-Canaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Leon Z, Garcia-Canaveras JC, Donato MT, Lahoz A (2013) Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis 34(19):2762–2775PubMedGoogle Scholar
  26. 26.
    Food and Drug Administration (2001) Guidance for industry: bioanalytical method validation. US Department of Health and Human Services, FDA, Bethesda, MDGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Juan Carlos García-Cañaveras
    • 1
    • 2
  • María Teresa Donato
    • 3
    • 1
  • Agustín Lahoz
    • 4
  1. 1.Biomarkers and Metabolmics Unidad de Hepatología Experimental, Instituto de Investigación SanitariaFundación Hospital La FeValenciaSpain
  2. 2.Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
  3. 3.Unidad de Hepatología Experimental, Instituto de Investigación SanitariaFundación Hospital La FeValenciaSpain
  4. 4.Biomarkers and Metabolomics Unidad de Hepatología Experimental, Instituto de Investigación SanitariaFundación Hospital La FeValenciaSpain

Personalised recommendations