Multidimensional Mass Spectrometry-Based Shotgun Lipidomics

  • Miao Wang
  • Xianlin Han
Part of the Methods in Molecular Biology book series (MIMB, volume 1198)


Multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) has become a foundational analytical technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been broadly used to determine the altered content and/or composition of lipid classes, subclasses, and individual molecular species induced by diseases, genetic manipulations, drug treatments, and aging, among others. Herein, we briefly discuss the principles underlying this technology and present a protocol for routine analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of biological samples. In particular, lipid sample preparation from a variety of biological materials, which is one of the key components of MDMS-SL, is described in detail. The protocol for mass spectrometric analysis can readily be expanded for analysis of other lipid classes not mentioned as long as appropriate sample preparation is conducted, and should aid researchers in the field to better understand and manage the technology for analysis of cellular lipidomes.

Key words

Direct infusion Intrasource separation Lipidome Mass spectrometry Shotgun lipidomics 



This work was supported by National Institute on Aging Grants R01 AG31675 and intramural institutional research funds. Special thanks are expressed to Ms. Imee Tiu for her editorial assistance.


  1. 1.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861PubMedCrossRefGoogle Scholar
  2. 2.
    Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44:1071–1079PubMedCrossRefGoogle Scholar
  3. 3.
    Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11:593–598PubMedCrossRefGoogle Scholar
  4. 4.
    Han X, Gross RW (2005) Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of the cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412PubMedCrossRefGoogle Scholar
  5. 5.
    Han X, Gross RW (2005) Shotgun lipidomics: multi-dimensional mass spectrometric analysis of cellular lipidomes. Expert Rev Proteomics 2:253–264PubMedCrossRefGoogle Scholar
  6. 6.
    Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW (2008) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal Chem 80:7576–7585PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kiebish MA, Bell R, Yang K, Phan T, Zhao Z, Ames W, Seyfried TN, Gross RW, Chuang JH, Han X (2010) Dynamic simulation of cardiolipin remodeling: greasing the wheels for an interpretative approach to lipidomics. J Lipid Res 51:2153–2170PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yang K, Han X (2011) Accurate Quantification of Lipid Species by Electrospray Ionization Mass Spectrometry–Meets a Key Challenge in Lipidomics. Metabolites 1:21–40PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Jiang X, Cheng H, Yang K, Gross RW, Han X (2007) Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low abundance regime of cellular sphingolipids. Anal Biochem 371:135–145PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Yang K, Zhao Z, Gross RW, Han X (2007) Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS ONE 2:e1368PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Han X, Yang K, Cheng H, Fikes KN, Gross RW (2005) Shotgun lipidomics of phosphoethanolamine-containing lipids in biological samples after one-step in situ derivatization. J Lipid Res 46:1548–1560PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wang M, Fang H, Han X (2012) Shotgun lipidomics analysis of 4-hydroxyalkenal species directly from lipid extracts after one-step in situ derivatization. Anal Chem 84:4580–4586PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Han X, Yang J, Cheng H, Ye H, Gross RW (2004) Towards fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal Biochem 330:317–331PubMedCrossRefGoogle Scholar
  15. 15.
    Han X, Gross RW (1994) Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A 91:10635–10639PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P (2001) Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res 42:663–672PubMedGoogle Scholar
  17. 17.
    DeLong CJ, Baker PRS, Samuel M, Cui Z, Thomas MJ (2001) Molecular species composition of rat liver phospholipids by ESI-MS/MS: the effect of chromatography. J Lipid Res 42:1959–1968PubMedGoogle Scholar
  18. 18.
    Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid identification and quantification by multi-dimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81:4356–4368PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Han X, Yang K, Gross RW (2008) Microfluidics-based electrospray ionization enhances intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: Development of an automated high throughput platform for shotgun lipidomics. Rapid Commun Mass Spectrom 22:2115–2124PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Yang K, Fang X, Gross RW, Han X (2011) A practical approach for determination of mass spectral baselines. J Am Soc Mass Spectrom 22:2090–2099PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295:88–100PubMedCrossRefGoogle Scholar
  22. 22.
    Christie WW, Han X (2010) Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis, 4th edn. The Oily Press, Bridgwater, EnglandCrossRefGoogle Scholar
  23. 23.
    Han X, Yang K, Yang J, Cheng H, Gross RW (2006) Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples. J Lipid Res 47:864–879PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Vance DE, Vance JE (2008) Biochemistry of Lipids, Lipoproteins and Membranes, 5th edn. Elsevier Science B.V, AmsterdamGoogle Scholar
  25. 25.
    Yang K, Zhao Z, Gross RW, Han X (2009) Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J Chromatogr B 877:2924–2936CrossRefGoogle Scholar
  26. 26.
    Han X (2002) Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 302:199–212PubMedCrossRefGoogle Scholar
  27. 27.
    Han X, Cheng H (2005) Characterization and direct quantitation of cerebroside molecular species from lipid extracts by shotgun lipidomics. J Lipid Res 46:163–175PubMedCrossRefGoogle Scholar
  28. 28.
    Hsu FF, Turk J (2001) Structural determination of glycosphingolipids as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisional-activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 12:61–79PubMedCrossRefGoogle Scholar
  29. 29.
    Hsu F-F, Bohrer A, Turk J (1998) Electrospray ionization tandem mass spectrometric analysis of sulfatide. Determination of fragmentation patterns and characterization of molecular species expressed in brain and in pancreatic islets. Biochim Biophys Acta 1392:202–216PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang X, Han X (2006) Characterization and direct quantitation of sphingoid base-1-phosphates from lipid extracts: A shotgun lipidomics approach. J Lipid Res 47:1865–1873PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Jiang X, Yang K, Han X (2009) Direct quantitation of psychosine from alkaline-treated lipid extracts with a semi-synthetic internal standard. J Lipid Res 50:162–172PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Cheng H, Jiang X, Han X (2007) Alterations in lipid homeostasis of mouse dorsal root ganglia induced by apolipoprotein E deficiency: A shotgun lipidomics study. J Neurochem 101:57–76PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Su X, Han X, Mancuso DJ, Abendschein DR, Gross RW (2005) Accumulation of long-chain acylcarnitine and 3-hydroxy acylcarnitine molecular species in diabetic myocardium: identification of alterations in mitochondrial fatty acid processing in diabetic myocardium by shotgun lipidomics. Biochemistry 44:5234–5245PubMedCrossRefGoogle Scholar
  34. 34.
    Kalderon B, Sheena V, Shachrur S, Hertz R, Bar-Tana J (2002) Modulation by nutrients and drugs of liver acyl-CoAs analyzed by mass spectrometry. J Lipid Res 43:1125–1132PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Diabetes and Obesity Research Center, Sanford-Burnham Medical Research InstituteOrlandoUSA

Personalised recommendations