Advertisement

Hox Genes pp 133-144 | Cite as

Functional Analysis of Hox Genes in Zebrafish

  • Franck Ladam
  • Charles G. SagerströmEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1196)

Abstract

The zebrafish model organism is well suited to study the role of specific genes, such as hox genes, in embryogenesis and organ function. The ability to modulate the activity of hox genes in living zebrafish embryos represents a cornerstone of such functional analyses. In this chapter we outline the basic methodology for nucleic acid injections into 1–2-cell-stage zebrafish embryos. We also report variations in this method to allow injection of mRNA, DNA, and antisense oligonucleotides to either overexpress, knock down, or knock out specific genes in zebrafish embryos.

Key words

hox Zebrafish Microinjection Over-expression Morpholino Tol2 Transgenesis Zinc-finger nuclease TALE nuclease CRISPR-Cas system 

Notes

Acknowledgements

This work was supported by NIH grants NS038183 and HD065081 to CGS.

References

  1. 1.
    Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456PubMedCrossRefGoogle Scholar
  2. 2.
    Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Westerfield M (2007) The zebrafish book, 5th edition; a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, EugeneGoogle Scholar
  4. 4.
    Villefranc JA, Amigo J, Lawson ND (2007) Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236:3077–3087PubMedCrossRefGoogle Scholar
  5. 5.
    Kwan KM, Fujimoto E, Grabher C et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099PubMedCrossRefGoogle Scholar
  6. 6.
    Ekker SC, Larson JD (2001) Morphant technology in model developmental systems. Genesis 30:89–93PubMedCrossRefGoogle Scholar
  7. 7.
    Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Suster ML, Abe G, Schouw A et al (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6:1998–2021PubMedCrossRefGoogle Scholar
  9. 9.
    Suster ML, Kikuta H, Urasaki A et al (2009) Transgenesis in zebrafish with the Tol2 transposon system. In: Cartwright EJ (ed) Methods in molecular biology, vol 561. Humana Press, Totowa, NJ, pp 41–63Google Scholar
  10. 10.
    Kikuta H, Kawakami K (2009) Transient and stable transgenesis using Tol2 transposon vectors. In: Lieschke GJ, Oates AC, Kawakami K. (eds) Methods in molecular biology, vol 546. Humana Press, Totowa, NJ, pp 69–84Google Scholar
  11. 11.
    Suster ML, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10:477PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  13. 13.
    Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646PubMedCrossRefGoogle Scholar
  14. 14.
    Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hwang WY, Fu Y, Reyon D, Maeder ML et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Xiao A, Wang Z, Hu Y et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. doi: 10.1093/nar/gkt464 Google Scholar
  17. 17.
    Gupta A, Hall VL, Kok FO et al (2013) Targeted chromosomal deletions and inversions in zebrafish. Genome Res 23:1008–1017PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bedell VM, Wang Y, Campbell JM et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Narishige Web News (2007) http://news.narishige-group.com/pdf/news001en.pdf. Accessed 4 Dec 2013
  20. 20.
    Alexandre D, Clarke JD, Oxtoby E et al (1996) Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122:735–746PubMedGoogle Scholar
  21. 21.
    Vlachakis N, Choe SK, Sagerström CG (2001) Meis3 synergizes with Pbx4 and Hoxb1b in promoting hindbrain fates in the zebrafish. Development 128:1299–1312PubMedGoogle Scholar
  22. 22.
    McClintock JM, Carlson R, Mann DM et al (2001) Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 128:2471–2484PubMedGoogle Scholar
  23. 23.
    Choe S-K, Zhang X, Hirsch N et al (2011) A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of the rhombomere 4 Fgf-signaling center. Dev Biol. doi: 10.1016/j.ydbio.2011.05.676 PubMedCentralPubMedGoogle Scholar
  24. 24.
    Bruce AE, Oates AC, Prince VE et al (2001) Additional hox clusters in the zebrafish: divergent expression patterns belie equivalent activities of duplicate hoxB5 genes. Evol Dev 3:127–144PubMedCrossRefGoogle Scholar
  25. 25.
    Gerety SS, Wilkinson DG (2011) Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Dev Biol 350:279–289PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.University of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations