Hox Genes pp 319-348 | Cite as

Hox Protein Interactions: Screening and Network Building

  • Isabelle Bergiers
  • Barbara Lambert
  • Sarah Daakour
  • Jean-Claude Twizere
  • René RezsohazyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1196)


Understanding the mode of action of Hox proteins requires the identification of molecular and cellular pathways they take part in. This includes to characterize the networks of protein-protein interactions involving Hox proteins. In this chapter we propose a strategy and methods to map Hox interaction networks, from yeast two-hybrid and high-throughput yeast two-hybrid interaction screening to bioinformatic analyses based on the software platform Cytoscape.

Key words

Hox proteins Yeast two-hybrid screening High-throughput yeast two-hybrid Affinity co-purification Interaction networks Cytoscape 



We are grateful to the Belgian Foundation against Cancer and to the Télévie program coordinated by the Belgian National Fund for Scientific Research (FNRS) for their support. I.B. and B.L. held a FRIA fellowship from the FNRS. S.D. is a “Leon Fredericq” fellow. J.C.T. is Research Investigator of the FNRS.


  1. 1.
    Forlani S, Lawson KA, Deschamps J (2003) Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 130:3807–3819PubMedCrossRefGoogle Scholar
  2. 2.
    Mallo M, Wellik DM, Deschamps J (2010) Hox genes and regional patterning of the vertebrate body plan. Dev Biol 344:7–15PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wellik DM (2009) Hox genes and vertebrate axial pattern. Curr Top Dev Biol 88:257–278PubMedCrossRefGoogle Scholar
  4. 4.
    Zakany J, Duboule D (2007) The role of Hox genes during vertebrate limb development. Curr Opin Genet Dev 17:359–366PubMedCrossRefGoogle Scholar
  5. 5.
    Chen F, Capecchi MR (1999) Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Proc Natl Acad Sci U S A 96:541–546PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Garin É, Lemieux M, Coulombe Y et al (2006) Stromal Hoxa5 function controls the growth and differentiation of mammary alveolar epithelium. Dev Dyn 235:1858–1871PubMedCrossRefGoogle Scholar
  7. 7.
    Wellik DM (2011) Hox genes and kidney development. Pediatr Nephrol 26:1559–1565PubMedCrossRefGoogle Scholar
  8. 8.
    Di-Poi N, Zakany J, Duboule D (2007) Distinct roles and regulations for HoxD genes in metanephric kidney development. PLoS Genet 3:e232PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Aubin J, Dery U, Lemieux M et al (2002) Stomach regional specification requires Hoxa5-driven mesenchymal-epithelial signaling. Development 129:4075–4087PubMedGoogle Scholar
  10. 10.
    Zacchetti G, Duboule D, Zakany J (2007) Hox gene function in vertebrate gut morphogenesis: the case of the caecum. Development 134:3967–3973PubMedCrossRefGoogle Scholar
  11. 11.
    Boucherat O, Montaron S, Berube-Simard FA, Aubin J, Philippidou P, Wellik DM, Dasen JS, Jeannotte L (2013) Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 304:L817–830PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Mandeville I, Aubin J, LeBlanc M et al (2006) Impact of the loss of Hoxa5 function on lung alveogenesis. Am J Pathol 169:1312–1327PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Zaffran S, Kelly RG (2012) New developments in the second heart field. Differentiation 84:17–24PubMedCrossRefGoogle Scholar
  14. 14.
    Oury F, Murakami Y, Renaud JS et al (2006) Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science 313:1408–1413PubMedCrossRefGoogle Scholar
  15. 15.
    Geisen MJ, Di Meglio T, Pasqualetti M et al (2008) Hox Paralog Group 2 Genes Control the Migration of Mouse Pontine Neurons through Slit-Robo Signaling. PLoS Biol 6:e142PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franze AM, Puelles L, Rijli FM, Studer M (2013) Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 9:e1003249PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Di Meglio T, Kratochwil CF, Vilain N et al (2013) Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 339:204–207PubMedCrossRefGoogle Scholar
  18. 18.
    Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109:39–45PubMedCrossRefGoogle Scholar
  19. 19.
    Argiropoulos B, Humphries RK (2007) Hox genes in hematopoiesis and leukemogenesis. Oncogene 26:6766–6776PubMedCrossRefGoogle Scholar
  20. 20.
    McGonigle GJ, Lappin TR, Thompson A (2008) Grappling with the HOX network in hematopoiesis and leukemia. Front Biosci 13:4297–4308PubMedCrossRefGoogle Scholar
  21. 21.
    Cillo C (2007) Deregulation of the Hox Gene Network and Cancer. In: Papageorgiou S (ed) Hox gene expression. Springer, New York, pp 121–133CrossRefGoogle Scholar
  22. 22.
    Paul D, Bridoux L, Rezsohazy R, Donnay I (2011) HOX genes are expressed in bovine and mouse oocytes and early embryos. Mol Reprod Dev 78:436–449PubMedCrossRefGoogle Scholar
  23. 23.
    Graba Y, Aragnol D, Pradel J (1997) Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays 19:379–388PubMedCrossRefGoogle Scholar
  24. 24.
    Akin ZN, Nazarali AJ (2005) Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 25:697–741PubMedCrossRefGoogle Scholar
  25. 25.
    Chen H, Rubin E, Zhang H et al (2005) Identification of transcriptional targets of HOXA5. J Biol Chem 280:19373–19380PubMedCrossRefGoogle Scholar
  26. 26.
    Lei H, Wang H, Juan AH, Ruddle FH (2005) The identification of Hoxc8 target genes. Proc Natl Acad Sci U S A 102:2420–2424PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Svingen T, Tonissen KF (2006) Hox transcription factors and their elusive mammalian gene targets. Heredity 97:88–96PubMedCrossRefGoogle Scholar
  28. 28.
    Makki N, Capecchi MR (2011) Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development. Dev Biol 357:295–304PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Donaldson IJ, Amin S, Hensman JJ, Kutejova E, Rattray M, Lawrence N, Hayes A, Ward CM, Bobola N (2012) Genome-wide occupancy links Hoxa2 to Wnt-beta-catenin signaling in mouse embryonic development. Nucleic Acids Res 40:3990–4001PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Merabet S, Pradel J, Graba Y (2005) Getting a molecular grasp on Hox contextual activity. Trends Genet 21:477–480PubMedCrossRefGoogle Scholar
  31. 31.
    Merabet S, Sambrani N, Pradel J, Graba Y (2010) Regulation of Hox activity: insights from protein motifs. Adv Exp Med Biol 689:3–16PubMedCrossRefGoogle Scholar
  32. 32.
    Rezsohazy R (2014) Non-transcriptional interactions of Hox proteins: inventory, facts, and future directions. Dev Dyn 243:117–131PubMedCrossRefGoogle Scholar
  33. 33.
    Vidalain P, Boxem M, Ge H et al (2004) Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32:363–370PubMedCrossRefGoogle Scholar
  34. 34.
    Dreze M, Monachello D, Lurin C et al (2010) High-quality binary interactome mapping. Methods Enzymol 470:281–315PubMedCrossRefGoogle Scholar
  35. 35.
    Lemmens I, Lievens S, Tavernier J (2010) Strategies towards high-quality binary protein interactome maps. J Proteomics 73:1415–1420PubMedCrossRefGoogle Scholar
  36. 36.
    Eyckerman S, Verhee A, der Heyden JV et al (2001) Design and application of a cytokine-receptor-based interaction trap. Nat Cell Biol 3:1114–1119PubMedCrossRefGoogle Scholar
  37. 37.
    Kodama Y, Hu CD (2012) Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 53:285–298PubMedCrossRefGoogle Scholar
  38. 38.
    Hudry B, Viala S, Graba Y, Merabet S (2011) Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Biol 9:5PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Koh GC, Porras P, Aranda B et al (2012) Analyzing protein-protein interaction networks. J Proteome Res 11:2014–2031PubMedCrossRefGoogle Scholar
  40. 40.
    Cusick ME, Klitgord N, Vidal M, Hill DE (2005) Interactome: gateway into systems biology. Hum Mol Genet 14(suppl_2):R171–181PubMedCrossRefGoogle Scholar
  41. 41.
    Lambert B, Vandeputte J, Remacle S et al (2012) Protein interactions of the transcription factor Hoxa1. BMC Dev Biol 12:29PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Bergiers I, Bridoux L, Nguyen N et al (2013) The Homeodomain Transcription Factor Hoxa2 Interacts with and Promotes the Proteasomal Degradation of the E3 Ubiquitin Protein Ligase RCHY1. PLoS One 8:e80387PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Vidal M, Braun P, Chen E et al (1996) Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc Natl Acad Sci U S A 93:10321–10326PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Vidal M, Brachmann RK, Fattaey A et al (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci U S A 93(19):10315–10320PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436PubMedCentralPubMedGoogle Scholar
  46. 46.
    Rual JF, Hirozane-Kishikawa T, Hao T et al (2004) Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res 14:2128–2135PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Wiemann S, Arlt D, Huber W et al (2004) From ORFeome to biology: a functional genomics pipeline. Genome Res 14:2136–2144PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Rual J-F, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178PubMedCrossRefGoogle Scholar
  49. 49.
    Lamesch P, Li N, Milstein S et al (2007) hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89:307–315PubMedCrossRefGoogle Scholar
  50. 50.
    Simonis N, Rual JF, Lemmens I et al (2012) Host-pathogen interactome mapping for HTLV-1 and -2 retroviruses. Retrovirology 9:26PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Orchard S (2012) Molecular interaction databases. Proteomics 12:1656–1662PubMedCrossRefGoogle Scholar
  52. 52.
    del-Toro N, Dumousseau M, Orchard S et al (2013) A new reference implementation of the PSICQUIC web service. Nucleic Acids Res 41:W601–606PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Lambert B, Vandeputte J, Desmet PM et al (2010) Pentapeptide insertion mutagenesis of the Hoxa1 protein: mapping of transcription activation and DNA-binding regulatory domains. J Cell Biochem 110:484–496PubMedGoogle Scholar
  54. 54.
    Van Roey K, Orchard S, Kerrien S et al (2013) Capturing cooperative interactions with the PSI-MI format. Database, bat066Google Scholar
  55. 55.
    Aranda B, Blankenburg H, Kerrien S et al (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods 8:528–529PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    van Iersel MP, Pico AR, Kelder T et al (2010) The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services. BMC Bioinformatics 11:5PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Scardoni G, Petterlini M, Laudanna C (2009) Analyzing biological network parameters with CentiScaPe. Bioinformatics 25:2857–2859PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Isabelle Bergiers
    • 1
  • Barbara Lambert
    • 1
  • Sarah Daakour
    • 2
  • Jean-Claude Twizere
    • 2
  • René Rezsohazy
    • 1
    Email author
  1. 1.Institut des Sciences de la VieUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Laboratory of Signaling and Protein Interactions, GIGA-RUniversity of LiegeLiègeBelgium

Personalised recommendations