Mouse Genetics pp 289-312 | Cite as

Generation of Transgenic Mouse Fluorescent Reporter Lines for Studying Hematopoietic Development

  • Andrei M. Vacaru
  • Joseph Vitale
  • Johnathan Nieves
  • Margaret H. Baron
Part of the Methods in Molecular Biology book series (MIMB, volume 1194)


During the development of the hematopoietic system, at least eight distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene and survey available fluorescent probes and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal.

Key words

Hematopoiesis Transgenic mice Knock-in Green fluorescent protein Fluorescent reporter 



We thank J. Barminko and G. Camprecios for their comments on the manuscript. Work in our laboratory was supported in part by grants to M.H.B. from the National Institutes of Health (RO1 HL62248 and, DK52191, and EB02209), the Roche Foundation for Anemia Research (grant 9699367999, cycle X), and the New York State Department of Health (NYSTEM grant N08G-024).


  1. 1.
    Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233PubMedCrossRefGoogle Scholar
  2. 2.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909PubMedCrossRefGoogle Scholar
  3. 3.
    Nowotschin S, Eakin GS, Hadjantonakis AK (2009) Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives. Trends Biotechnol 27(5):266–276PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163PubMedCrossRefGoogle Scholar
  5. 5.
    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Baron MH, Isern J, Fraser ST (2012) The embryonic origins of erythropoiesis in mammals. Blood 119(21):4828–4837PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Palis J, Yoder MC (2001) Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 29(8):927–936PubMedCrossRefGoogle Scholar
  8. 8.
    Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9(2):129–136PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Orkin SH, Zon LI (2008) SnapShot: hematopoiesis. Cell 132(4):712PubMedGoogle Scholar
  10. 10.
    Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196(4):947–950PubMedCrossRefGoogle Scholar
  11. 11.
    Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bulger M, Groudine M (2010) Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev Biol 339(2):250–257PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Choi T, Huang M, Gorman C, Jaenisch R (1991) A generic intron increases gene expression in transgenic mice. Mol Cell Biol 11(6):3070–3074PubMedCentralPubMedGoogle Scholar
  14. 14.
    Chada K, Magram J, Raphael K, Radice G, Lacy E, Costantini F (1985) Specific expression of a foreign β-globin gene in erythroid cells of transgenic mice. Nature 314:377–380PubMedCrossRefGoogle Scholar
  15. 15.
    Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD (1985) Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J 4(7):1715–1723PubMedCentralPubMedGoogle Scholar
  16. 16.
    Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory PressGoogle Scholar
  17. 17.
    Henikoff S (1998) Conspiracy of silence among repeated transgenes. Bioessays 20(7):532–535PubMedCrossRefGoogle Scholar
  18. 18.
    Bushey AM, Dorman ER, Corces VG (2008) Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell 32(1):1–9PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Festenstein R, Tolaini M, Corbella P, Mamalaki C, Parrington J, Fox M et al (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271(5252):1123–1125PubMedCrossRefGoogle Scholar
  20. 20.
    Li Q, Harju S, Peterson KR (1999) Locus control regions: coming of age at a decade plus. Trends Genet 15(10):403–408PubMedCrossRefGoogle Scholar
  21. 21.
    Festenstein R, Kioussis D (2000) Locus control regions and epigenetic chromatin modifiers. Curr Opin Genet Dev 10(2):199–203PubMedCrossRefGoogle Scholar
  22. 22.
    Forrester WC, Novak U, Gelinas R, Groudine M (1989) Molecular analysis of the human beta-globin locus activation region. Proc Natl Acad Sci U S A 86(14):5439–5443PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH (2001) Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 128(10):1717–1730PubMedGoogle Scholar
  24. 24.
    Isern J, Fraser ST, He Z, Baron MH (2008) The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A 105(18):6662–6667PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Haruyama N, Cho A, Kulkarni AB (2009) Overview: engineering transgenic constructs and mice. Curr Protoc Cell Biol Chapter 19:Unit 19 0Google Scholar
  26. 26.
    Rasmussen KD, O’Carroll D (2011) The miR-144/451eGFP allele, a novel tool for resolving the erythroid potential of hematopoietic precursors. Blood 118(11):2988–2992PubMedCrossRefGoogle Scholar
  27. 27.
    Buza-Vidas N, Cismasiu VB, Moore S, Mead AJ, Woll PS, Lutteropp M et al (2012) Dicer is selectively important for the earliest stages of erythroid development. Blood 120(12):2412–2416PubMedCrossRefGoogle Scholar
  28. 28.
    North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, Robin C et al (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16(5):661–672PubMedCrossRefGoogle Scholar
  29. 29.
    Lorsbach RB, Moore J, Ang SO, Sun W, Lenny N, Downing JR (2004) Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 103(7):2522–2529PubMedCrossRefGoogle Scholar
  30. 30.
    Mountford PS, Smith AG (1995) Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends Genet 11(5):179–184PubMedCrossRefGoogle Scholar
  31. 31.
    Vintersten K, Testa G, Naumann R, Anastassiadis K, Stewart AF (2008) Bacterial artificial chromosome transgenesis through pronuclear injection of fertilized mouse oocytes. Methods Mol Biol 415:83–100PubMedGoogle Scholar
  32. 32.
    Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605PubMedCrossRefGoogle Scholar
  34. 34.
    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Boyer SW, Beaudin AE, Forsberg EC (2012) Mapping differentiation pathways from hematopoietic stem cells using Flk2/Flt3 lineage tracing. Cell Cycle 11(17):3180–3188PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lewandoski M (2007) Analysis of mouse development with conditional mutagenesis. Handb Exp Ther 178:231–258Google Scholar
  37. 37.
    Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269(5229):1427–1429PubMedCrossRefGoogle Scholar
  38. 38.
    Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572PubMedCrossRefGoogle Scholar
  39. 39.
    Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99(12):7877–7882PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Zhu H, Wang G, Li G, Han M, Xu T, Zhuang Y et al (2005) Ubiquitous expression of mRFP1 in transgenic mice. Genesis 42(2):86–90PubMedCrossRefGoogle Scholar
  41. 41.
    Shkrob MA, Yanushevich YG, Chudakov DM, Gurskaya NG, Labas YA, Poponov SY et al (2005) Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem J 392(Pt 3):649–654PubMedCentralPubMedGoogle Scholar
  42. 42.
    Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol Chapter 21:Unit 21 4Google Scholar
  43. 43.
    Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8(7):377–385PubMedCrossRefGoogle Scholar
  44. 44.
    Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:33PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Rhee JM, Pirity MK, Lackan CS, Long JZ, Kondoh G, Takeda J et al (2006) In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis 44(4):202–218PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6(11):885–891PubMedCrossRefGoogle Scholar
  47. 47.
    Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB et al (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21(2):191–194PubMedCrossRefGoogle Scholar
  48. 48.
    Stadtfeld M, Varas F, Graf T (2005) Fluorescent protein-cell labeling and its application in time-lapse analysis of hematopoietic differentiation. Methods Mol Med 105:395–412PubMedGoogle Scholar
  49. 49.
    Nowotschin S, Eakin GS, Hadjantonakis AK (2009) Dual transgene strategy for live visualization of chromatin and plasma membrane dynamics in murine embryonic stem cells and embryonic tissues. Genesis 47(5):330–336PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Heck S, Ermakova O, Iwasaki H, Akashi K, Sun CW, Ryan TM et al (2003) Distinguishable live erythroid and myeloid cells in beta-globin ECFP x lysozyme EGFP mice. Blood 101(3):903–906PubMedCrossRefGoogle Scholar
  51. 51.
    Papaioannou VE, Behringer RR (2005) Mouse phenotypes: a handbook of mutation analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  52. 52.
    Conner DA (2005) Transgenic mouse colony management. Curr Protoc Mol Biol. Chapter 23:Unit 23 10Google Scholar
  53. 53.
    Robertson G, Garrick D, Wilson M, Martin DI, Whitelaw E (1996) Age-dependent silencing of globin transgenes in the mouse. Nucleic Acids Res 24(8):1465–1471PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Spector DL, Goldman RD (2006) Basic methods in microscopy. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  55. 55.
    Jones EA, Baron MH, Fraser SE, Dickinson ME (2005) Dynamic in vivo imaging of mammalian hematovascular development using whole embryo culture. Methods Mol Med 105:381–394PubMedGoogle Scholar
  56. 56.
    Udan RS, Dickinson ME (2010) Imaging mouse embryonic development. In: Wassarman PM, Soriano PM (eds) Methods in enzymology. Academic, San Diego, CA, pp 329–349Google Scholar
  57. 57.
    Nowotschin S, Ferrer-Vaquer A, Hadjantonakis A-K (2010) Imaging mouse development with confocal time-lapse microscopy. In: Wassarman PM, Soriano PM (eds) Methods in enzymology. Academic, San Diego, CA, pp 351–377Google Scholar
  58. 58.
    Hawley TS, Hawley R (2011) Flow cytometry protocols, 3rd edn. Humana Press, Totowa, NJCrossRefGoogle Scholar
  59. 59.
    Krajnc NL, Smrekar F, Cerne J, Raspor P, Modic M, Krgovic D et al (2009) Purification of large plasmids with methacrylate monolithic columns. J Sep Sci 32(15–16):2682–2690PubMedCrossRefGoogle Scholar
  60. 60.
    Ittner LM, Gotz J (2007) Pronuclear injection for the production of transgenic mice. Nat Protoc 2(5):1206–1215PubMedCrossRefGoogle Scholar
  61. 61.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  62. 62.
    Baron MH, Mohn D (2005) Mouse embryonic explant culture system for analysis of hematopoietic and vascular development. Methods Mol Med 105:231–256PubMedGoogle Scholar
  63. 63.
    Fraser ST, Isern J, Baron MH (2007) Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109(1):343–352PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    McGrath KE, Koniski AD, Malik J, Palis J (2003) Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101(5):1669–1676PubMedCrossRefGoogle Scholar
  65. 65.
    Gekas C, Rhodes KE, Mikkola HK (2008) Isolation and visualization of mouse placental hematopoietic stem cells. Curr Protoc Stem Cell Biol Chapter 2:Unit 2A 8 1–2A 8 14Google Scholar
  66. 66.
    Morgan K, Kharas M, Dzierzak E, Gilliland DG (2008) Isolation of early hematopoietic stem cells from murine yolk sac and AGM. J Vis Exp 16:e789Google Scholar
  67. 67.
    Graubert TA, Hug BA, Wesselschmidt R, Hsieh CL, Ryan TM, Townes TM et al (1998) Stochastic, stage-specific mechanisms account for the variegation of a human globin transgene. Nucleic Acids Res 26(12):2849–2858PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Robertson G, Garrick D, Wu W, Kearns M, Martin D, Whitelaw E (1995) Position-dependent variegation of globin transgene expression in mice. Proc Natl Acad Sci U S A 92(12):5371–5375PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Fraser ST, Hadjantonakis AK, Sahr KE, Willey S, Kelly OG, Jones EA et al (2005) Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice. Genesis 42(3):162–171PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Suzuki N, Ohneda O, Minegishi N, Nishikawa M, Ohta T, Takahashi S et al (2006) Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc Natl Acad Sci U S A 103(7):2202–2207PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Hills D, Gribi R, Ure J, Buza-Vidas N, Luc S, Jacobsen SE et al (2011) Hoxb4-YFP reporter mouse model: a novel tool for tracking HSC development and studying the role of Hoxb4 in hematopoiesis. Blood 117(13):3521–3528PubMedCrossRefGoogle Scholar
  72. 72.
    Ma X, Robin C, Ottersbach K, Dzierzak E (2002) The Ly-6A (Sca-1) GFP transgene is expressed in all adult mouse hematopoietic stem cells. Stem Cells 20(6):514–521PubMedGoogle Scholar
  73. 73.
    Hosen N, Yamane T, Muijtjens M, Pham K, Clarke MF, Weissman IL (2007) Bmi-1-green fluorescent protein-knock-in mice reveal the dynamic regulation of bmi-1 expression in normal and leukemic hematopoietic cells. Stem Cells 25(7):1635–1644PubMedCrossRefGoogle Scholar
  74. 74.
    Tadjali M, Zhou S, Rehg J, Sorrentino BP (2006) Prospective isolation of murine hematopoietic stem cells by expression of an Abcg2/GFP allele. Stem Cells 24(6):1556–1563PubMedCrossRefGoogle Scholar
  75. 75.
    Cairns LA, Moroni E, Levantini E, Giorgetti A, Klinger FG, Ronzoni S et al (2003) Kit regulatory elements required for expression in developing hematopoietic and germ cell lineages. Blood 102(12):3954–3962PubMedCrossRefGoogle Scholar
  76. 76.
    Kimura Y, Ding B, Imai N, Nolan DJ, Butler JM, Rafii S (2011) c-Kit-mediated functional positioning of stem cells to their niches is essential for maintenance and regeneration of adult hematopoiesis. PLoS One 6(10):e26918PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Bee T, Swiers G, Muroi S, Pozner A, Nottingham W, Santos AC et al (2010) Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood 115(15):3042–3050PubMedCrossRefGoogle Scholar
  78. 78.
    Nutt SL, Metcalf D, D’Amico A, Polli M, Wu L (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201(2):221–231PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Zhang J, Varas F, Stadtfeld M, Heck S, Faust N, Graf T (2007) CD41-YFP mice allow in vivo labeling of megakaryocytic cells and reveal a subset of platelets hyperreactive to thrombin stimulation. Exp Hematol 35(3):490–499PubMedCrossRefGoogle Scholar
  80. 80.
    Vassen L, Okayama T, Moroy T (2007) Gfi1b:green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1. Blood 109(6):2356–2364PubMedCrossRefGoogle Scholar
  81. 81.
    Wareing S, Eliades A, Lacaud G, Kouskoff V (2012) ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development. Dev Dyn 241(9):1454–1464PubMedCrossRefGoogle Scholar
  82. 82.
    Koyano-Nakagawa N, Kweon J, Iacovino M, Shi X, Rasmussen TL, Borges L et al (2012) Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression. Stem Cells 30(8):1611–1623PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Nishimura S, Takahashi S, Kuroha T, Suwabe N, Nagasawa T, Trainor C et al (2000) A GATA box in the GATA-1 gene hematopoietic enhancer is a critical element in the network of GATA factors and sites that regulate this gene. Mol Cell Biol 20(2):713–723PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Heinrich AC, Pelanda R, Klingmuller U (2004) A mouse model for visualization and conditional mutations in the erythroid lineage. Blood 104(3):659–666PubMedCrossRefGoogle Scholar
  85. 85.
    Faust N, Varas F, Kelly LM, Heck S, Graf T (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96(2):719–726PubMedGoogle Scholar
  86. 86.
    Hamada M, Moriguchi T, Yokomizo T, Morito N, Zhang C, Takahashi S (2003) The mouse mafB 5'-upstream fragment directs gene expression in myelomonocytic cells, differentiated macrophages and the ventral spinal cord in transgenic mice. J Biochem 134(2):203–210PubMedGoogle Scholar
  87. 87.
    Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101(3):1155–1163PubMedCrossRefGoogle Scholar
  88. 88.
    Lohmann F, Bieker JJ (2008) Activation of Eklf expression during hematopoiesis by Gata2 and Smad5 prior to erythroid commitment. Development 135(12):2071–2082PubMedCrossRefGoogle Scholar
  89. 89.
    Papadopoulos P, Gutierrez L, van der Linden R, Kong ASJ, Maas A, Drabek D et al (2012) A dual reporter mouse model of the human beta-globin locus: applications and limitations. PLoS One 7(12):e51272PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N et al (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22(5):643–654PubMedCrossRefGoogle Scholar
  91. 91.
    Norris HH, Martin AJ, Lybarger LP, Andersen H, Chervenak DC, Chervenak R (2007) TCRbeta enhancer activation in early and late lymphoid progenitors. Cell Immunol 247(2):59–71PubMedCrossRefGoogle Scholar
  92. 92.
    Singbartl K, Thatte J, Smith ML, Wethmar K, Day K, Ley K (2001) A CD2-green fluorescence protein-transgenic mouse reveals very late antigen-4-dependent CD8+ lymphocyte rolling in inflamed venules. J Immunol 166(12):7520–7526PubMedCrossRefGoogle Scholar
  93. 93.
    Monroe RJ, Seidl KJ, Gaertner F, Han S, Chen F, Sekiguchi J et al (1999) RAG2:GFP knockin mice reveal novel aspects of RAG2 expression in primary and peripheral lymphoid tissues. Immunity 11(2):201–212PubMedCrossRefGoogle Scholar
  94. 94.
    Fontenot JD, Dooley JL, Farr AG, Rudensky AY (2005) Developmental regulation of Foxp3 expression during ontogeny. J Exp Med 202(7):901–906PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R et al (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t + T cells. J Exp Med 205(6):1381–1393PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Fuxa M, Busslinger M (2007) Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in support of its B cell identity function. J Immunol 178(12):8222–8228PubMedCrossRefGoogle Scholar
  97. 97.
    Kuwata N, Igarashi H, Ohmura T, Aizawa S, Sakaguchi N (1999) Cutting edge: absence of expression of RAG1 in peritoneal B-1 cells detected by knocking into RAG1 locus with green fluorescent protein gene. J Immunol 163(12):6355–6359PubMedGoogle Scholar
  98. 98.
    Kallies A, Hasbold J, Tarlinton DM, Dietrich W, Corcoran LM, Hodgkin PD et al (2004) Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J Exp Med 200(8):967–977PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Yang J, Hills D, Taylor E, Pfeffer K, Ure J, Medvinsky A (2008) Transgenic tools for analysis of the haematopoietic system: knock-in CD45 reporter and deleter mice. J Immunol Methods 337(2):81–87PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrei M. Vacaru
    • 1
    • 4
  • Joseph Vitale
    • 1
    • 4
  • Johnathan Nieves
    • 1
    • 4
  • Margaret H. Baron
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of Developmental and Regenerative BiologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.The Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  5. 5.The Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  6. 6.Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations