Skip to main content

Induction of Passive EAE Using Myelin-Reactive CD4+ T Cells

  • Protocol
  • First Online:
Book cover T-Helper Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1193))

Abstract

Experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system (CNS) often used as a model for the early inflammatory stages of multiple sclerosis and also as a model of organ-specific autoimmune disease.

This protocol describes the induction of passive EAE in mice, either using T cells isolated from mice primed with myelin antigens, or through the use of naïve TCR transgenic T cells activated in vitro in the presence of myelin-derived antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11(3):195–199

    Article  CAS  PubMed  Google Scholar 

  2. Zamvil S et al (1985) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317(6035):355–358

    Article  CAS  PubMed  Google Scholar 

  3. O’Connor RA et al (2008) Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 181(6):3750–3754

    Article  PubMed Central  PubMed  Google Scholar 

  4. Jager A et al (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183(11):7169–7177

    Article  PubMed Central  PubMed  Google Scholar 

  5. Codarri L et al (2011) RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567

    Article  CAS  PubMed  Google Scholar 

  6. Kroenke MA, Chensue SW, Segal BM (2010) EAE mediated by a non-IFN-gamma/non-IL-17 pathway. Eur J Immunol 40(8):2340–2348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kroenke MA, Segal BM (2011) IL-23 modulated myelin-specific T cells induce EAE via an IFNgamma driven, IL-17 independent pathway. Brain Behav Immun 25(5):932–937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. O’Connor RA, Malpass KH, Anderton SM (2007) The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J Immunol 179(2):958–966

    Article  PubMed  Google Scholar 

  9. Ito A et al (2003) Transfer of severe experimental autoimmune encephalomyelitis by IL-12- and IL-18-potentiated T cells is estrogen sensitive. J Immunol 170(9):4802–4809

    Article  CAS  PubMed  Google Scholar 

  10. Kroenke MA et al (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205(7):1535–1541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ghoreschi K et al (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467(7318):967–971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Liu GY et al (1995) Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3(4):407–415

    Article  CAS  PubMed  Google Scholar 

  13. Ryan KR, McCue D, Anderton SM (2005) Fas-mediated death and sensory adaptation limit the pathogenic potential of autoreactive T cells after strong antigenic stimulation. J Leukoc Biol 78(1):43–50

    Article  CAS  PubMed  Google Scholar 

  14. Stromnes IM et al (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14(3):337–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wensky AK et al (2005) IFN-gamma determines distinct clinical outcomes in autoimmune encephalomyelitis. J Immunol 174(3):1416–1423

    Article  CAS  PubMed  Google Scholar 

  16. Rothhammer V et al (2011) Th17 lymphocytes traffic to the central nervous system independently of alpha4 integrin expression during EAE. J Exp Med 208(12):2465–2476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Muller DM, Pender MP, Greer JM (2000) A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol 100(2):174–182

    Article  CAS  PubMed  Google Scholar 

  18. Lees JR et al (2008) Regional CNS responses to IFN-gamma determine lesion localization patterns during EAE pathogenesis. J Exp Med 205(11):2633–2642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Domingues HS et al (2010) Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 5(11):e15531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. McGeachy MJ, Stephens LA, Anderton SM (2005) Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 175(5):3025–3032

    Article  CAS  PubMed  Google Scholar 

  21. Lafaille JJ et al (1994) High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78(3):399–408

    Article  CAS  PubMed  Google Scholar 

  22. Zamvil SS et al (1985) Encephalitogenic T cell clones specific for myelin basic protein. An unusual bias in antigen recognition. J Exp Med 162(6):2107–2124

    Article  CAS  PubMed  Google Scholar 

  23. Goverman J et al (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72(4):551–560

    Article  CAS  PubMed  Google Scholar 

  24. Hardardottir F, Baron JL, Janeway CA Jr (1995) T cells with two functional antigen-specific receptors. Proc Natl Acad Sci U S A 92(2):354–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sakai K et al (1988) Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J Neuroimmunol 19(1–2):21–32

    Article  CAS  PubMed  Google Scholar 

  26. Tuohy V et al (1989) Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J Immunol 142(5):1523–1527

    CAS  PubMed  Google Scholar 

  27. Waldner H et al (2000) Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc Natl Acad Sci U S A 97(7):3412–3417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Greer JM et al (1992) Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (residues 178-191) for SJL mice. J Immunol 149(3):783–788

    CAS  PubMed  Google Scholar 

  29. Amor S et al (1993) Identification of a major encephalitogenic epitope of proteolipid protein (residues 56-70) for the induction of experimental allergic encephalomyelitis in Biozzi AB/H and nonobese diabetic mice. J Immunol 150(12):5666–5672

    CAS  PubMed  Google Scholar 

  30. Amor S et al (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153(10):4349–4356

    CAS  PubMed  Google Scholar 

  31. Mendel I, de Rosbo NK, Ben‐Nun A (1995) A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H‐2b mice: fine specificity and T cell receptor Vβ expression of encephalitogenic T cells. Eur J Immunol 25(7):1951–1959

    Article  CAS  PubMed  Google Scholar 

  32. Bettelli E et al (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197(9):1073–1081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. de Rosbo NK, Mendel I, Ben-Nun A (1995) Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Eur J Immunol 25(4):985–993

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Anderton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

McPherson, R.C., Cambrook, H.E., O’Connor, R.A., Anderton, S.M. (2014). Induction of Passive EAE Using Myelin-Reactive CD4+ T Cells. In: Waisman, A., Becher, B. (eds) T-Helper Cells. Methods in Molecular Biology, vol 1193. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1212-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1212-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1211-7

  • Online ISBN: 978-1-4939-1212-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics