Microscopy Assays for Evaluation of Mast Cell Migration and Chemotaxis

  • Monika Bambousková
  • Zuzana Hájková
  • Pavel Dráber
  • Petr Dráber
Part of the Methods in Molecular Biology book series (MIMB, volume 1192)


A better understanding of the molecular mechanisms leading to mast cell migration and chemotaxis is the long-term goal in mast cell research and is essential for comprehension of mast cell function in health and disease. Various techniques have been developed in recent decades for in vitro and in vivo assessment of mast cell motility and chemotaxis. In this chapter three microscopy assays facilitating real-time quantification of mast cell chemotaxis and migration are described, focusing on individual cell tracking and data analysis.

Key words

Mast cells Cell migration Chemotaxis Chemokine Chemoattractant 



This work was supported in part by Grants P302-14-09807S, P305-14-00703S, 301/09/1826, P302/10/1759, P302/12/G101, and P302/12/1673 from the Czech Science Foundation, project LD13015 and LD12073 from the Ministry of Education, Youth and Sport of the Czech Republic. We also acknowledge support of the COST Action BM1007 Mast Cells and Basophils—Targets for Innovative Therapies as well as Institutional support RVO 68378050. M.B. and Z.H. were supported in part by the Faculty of Science, Charles University, Prague.


  1. 1.
    Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445–454PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Abraham SN, St. John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452PubMedGoogle Scholar
  3. 3.
    Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796:19–26PubMedCentralPubMedGoogle Scholar
  4. 4.
    Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18:693–704PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Halova I, Draberova L, Draber P (2012) Mast cell chemotaxis - chemoattractants and signaling pathways. Front Immunol 3:119PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kirshenbaum AS, Metcalfe DD (2006) Growth of human mast cells from bone marrow and peripheral blood-derived CD34+ pluripotent progenitor cells. Methods Mol Biol 315:105–112PubMedGoogle Scholar
  7. 7.
    Ashman LK (1999) The biology of stem cell factor and its receptor c-Kit. Int J Biochem Cell Biol 31:1037–1051PubMedCrossRefGoogle Scholar
  8. 8.
    Lantz CS, Boesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC, Nawa Y, Dranoff G, Galli SJ (1998) Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392:90–93PubMedCrossRefGoogle Scholar
  9. 9.
    Welle M (1997) Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J Leukoc Biol 61:233–245PubMedGoogle Scholar
  10. 10.
    Taub D, Dastych J, Inamura N, Upton J, Kelvin D, Metcalfe D, Oppenheim J (1995) Bone marrow-derived murine mast cells migrate, but do not degranulate, in response to chemokines. J Immunol 154:2393–2402PubMedGoogle Scholar
  11. 11.
    Okayama Y, Kawakami T (2006) Development, migration, and survival of mast cells. Immunol Res 34:97–115PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Jolly PS, Bektas M, Olivera A, Gonzalez-Espinosa C, Proia RL, Rivera J, Milstien S, Spiegel S (2004) Transactivation of sphingosine-1-phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med 199:959–970PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Weller CL, Collington SJ, Brown JK, Miller HRP, Al-Kashi A, Clark P, Jose PJ, Hartnell A, Williams TJ (2005) Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J Exp Med 201:1961–1971PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Weller CL, Collington SJ, Hartnell A, Conroy DM, Kaise T, Barker JE, Wilson MS, Taylor GW, Jose PJ, Williams TJ (2007) Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc Natl Acad Sci 104:11712–11717PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kuehn HS, Jung M-Y, Beaven MA, Metcalfe DD, Gilfillan AM (2011) Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J Biol Chem 286:391–402PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ishizuka T, Okajima F, Ishiwara M, Iizuka K, Ichimonji I, Kawata T, Tsukagoshi H, Dobashi K, Nakazawa T, Mori M (2001) Sensitized mast cells migrate toward the antigen: a response regulated by p38 mitogen-activated protein kinase and Rho-associated coiled-coil-forming protein kinase. J Immunol 167:2298–2304PubMedCrossRefGoogle Scholar
  17. 17.
    Kitaura J, Kinoshita T, Matsumoto M, Chung S, Kawakami Y, Leitges M, Wu D, Lowell CA, Kawakami T (2005) IgE- and IgE + Ag-mediated mast cell migration in an autocrine/paracrine fashion. Blood 105:3222–3229PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Echtenacher B, Mannel DN, Hultner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381:75–77PubMedCrossRefGoogle Scholar
  19. 19.
    Malaviya R, Ikeda T, Ross E, Abraham SN (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381:77–80PubMedCrossRefGoogle Scholar
  20. 20.
    Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID (2002) Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 346:1699–1705PubMedCrossRefGoogle Scholar
  21. 21.
    Quintás-Cardama A, Jain N, Verstovsek S (2011) Advances and controversies in the diagnosis, pathogenesis, and treatment of systemic mastocytosis. Cancer 117:5439–5449PubMedCrossRefGoogle Scholar
  22. 22.
    Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hálová I, Dráberová L, Bambousková M, Machyna M, Stegurová L, Smrž D, Dráber P (2013) Crosstalk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis. J Biol Chem 288:9801–9814PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lee J, Veatch SL, Baird B, Holowka D (2012) Molecular mechanisms of spontaneous and directed mast cell motility. J Leukoc Biol 92:1029–1041PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Heit B, Kubes P (2003) Measuring chemotaxis and chemokinesis: the under-agarose cell migration assay. Sci STKE 2003:pl5PubMedGoogle Scholar
  26. 26.
    Wiggins HL, Rappoport JZ (2010) An agarose spot assay for chemotactic invasion. Biotechniques 48:121–124PubMedCrossRefGoogle Scholar
  27. 27.
    Poole TJ, Zetter BR (1983) Stimulation of rat peritoneal mast cell migration by tumor-derived peptides. Cancer Res 43:5857–5861PubMedGoogle Scholar
  28. 28.
    Kuiper JWP, Sun C, Magalhães MA, Glogauer M (2011) Rac regulates PtdInsP3 signaling and the chemotactic compass through a redox-mediated feedback loop. Blood 118:6164–6171PubMedCrossRefGoogle Scholar
  29. 29.
    Zengel P, Nguyen-Hoang A, Schildhammer C, Zantl R, Kahl V, Horn E (2011) μ-Slide chemotaxis: a new chamber for long-term chemotaxis studies. BMC Cell Biol 12:21PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker SA, Dunn AR (1995) Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83:301–311PubMedCrossRefGoogle Scholar
  31. 31.
    Hájková Z, Bugajev V, Dráberová E, Vinopal S, Dráberová L, Janáček J, Dráber P, Dráber P (2011) STIM1-directed reorganization of microtubules in activated mast cells. J Immunol 186:913–923PubMedCrossRefGoogle Scholar
  32. 32.
    Laidlaw TM, Steinke JW, Tinana AM, Feng C, Xing W, Lam BK, Paruchuri S, Boyce JA, Borish L (2011) Characterization of a novel human mast cell line that responds to stem cell factor and expresses functional FcεRI. J Allergy Clin Immunol 127:815–822PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratory of Signal Transduction Institute of Molecular Genetics, v.v.i.Academy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics, v.v.i.Academy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations