Skip to main content

13C-Based Metabolic Flux Analysis of Recombinant Pichia pastoris

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1191))

Abstract

Overexpression of a foreign protein may negatively affect several cell growth parameters, as well as cause cellular stress. Central (or core) metabolism plays a crucial role since it supplies energy, reduction equivalents, and precursor molecules for the recombinant product, cell’s maintenance, and growth needs. However, the number of quantitative physiology studies of the impact of recombinant protein production on the central metabolic pathways of yeast cell factories has been traditionally rather limited, thereby hampering the application of rational strain engineering strategies targeting central metabolism.

The development and application of quantitative physiology and modelling tools and methodologies is allowing for a systems-level understanding of the effect of bioprocess parameters such as growth rate, temperature, oxygen availability, and substrate(s) choice on metabolism, and its subsequent interactions with recombinant protein synthesis, folding, and secretion.

Here, we review the recent developments and applications of 13C-based metabolic flux analysis (13C-MFA) of Pichia pastoris and the gained understanding of the metabolic behavior of this yeast in recombinant protein production bioprocesses. We also discuss the potential of multilevel studies integrating 13C-MFA with other omics analyses, as well as future perspectives on the metabolic modelling approaches to study and design metabolic engineering strategies for improved protein production.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gorgens JF, van Zyl WH, Knoetze JH, Hahn-Hagerdal B (2001) The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 73:238–245

    Article  CAS  PubMed  Google Scholar 

  2. Vigentini I, Brambilla L, Branduardi P, Merico A, Porro D, Compagno C (2005) Heterologous protein production in Zygosaccharomyces bailii: physiological effects and fermentative strategies. FEMS Yeast Res 5:647–652

    Article  CAS  PubMed  Google Scholar 

  3. Cos O, Serrano A, Montesinos JL, Ferrer P, Cregg JM, Valero F (2005) Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. J Biotechnol 116:321–335

    Article  PubMed  Google Scholar 

  4. Krogh AM, Beck V, Christensen LH, Henriksen CM, Møller K, Olsson L (2008) Adaptation of Saccharomyces cerevisiae expressing a heterologous protein. J Biotechnol 137:28–33

    Article  CAS  PubMed  Google Scholar 

  5. Heyland J, Fu J, Blank LM, Schmid A (2010) Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol Bioeng 107:357–368

    Article  CAS  PubMed  Google Scholar 

  6. Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodriguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C et al (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 7:11

    Article  PubMed Central  PubMed  Google Scholar 

  7. Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403–417

    Article  CAS  PubMed  Google Scholar 

  8. Damasceno LM, Huang CJ, Batt CA (2012) Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol 93:31–39

    Article  PubMed  Google Scholar 

  9. Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D (2013) Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8:191–208

    Article  CAS  PubMed  Google Scholar 

  10. Heyland J, Fu J, Blank LM, Schmid A (2011) Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng 108:1942–1953

    Article  CAS  PubMed  Google Scholar 

  11. Carnicer M, ten Pierick A, van Dam J, Heijnen JJ, Albiol J, van Gulik W, Ferrer P (2012) Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions. Microb Cell Fact 11:83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jordà J, Jouhten P, Cámara E, Maaheimo H, Albiol J, Ferrer P (2012) Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures. Microb Cell Fact 11:57

    Article  PubMed Central  PubMed  Google Scholar 

  13. Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D et al (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 4:141

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kohlstedt M, Becker J, Wittmann C (2010) Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 88:1065–1075

    Article  CAS  PubMed  Google Scholar 

  16. Xu Z, Tsurugi K (2006) A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae. FEBS J 273:1696–1709

    Article  CAS  PubMed  Google Scholar 

  17. Hans MA, Heinzle E, Wittmann C (2003) Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae. Biotechnol Bioeng 82:143–151

    Article  CAS  PubMed  Google Scholar 

  18. Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129

    Article  CAS  PubMed  Google Scholar 

  19. Jordà J, Santos de Jesus S, Peltier S, Ferrer P, Albiol J (2014) Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived 13C-labelling data from proteinogenic amino acids. New Biotechnol 31(1):120–132

    Article  Google Scholar 

  20. Baumann K, Dato L, Graf AB, Frascotti G, Dragosits M, Porro D, Mattanovich D, Ferrer P, Branduardi P (2011) The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris—a comparative analysis. BMC Genomics 12:218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Unrean P, Nguyen NH (2012) Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions. Appl Microbiol Biotechnol 94:1387–1398

    Article  CAS  PubMed  Google Scholar 

  22. Celik E, Calik P, Oliver SG (2010) Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate. Biotechnol Bioeng 105:317–329

    Article  CAS  PubMed  Google Scholar 

  23. Tortajada M, Llaneras F, Picó J (2010) Validation of a constraint-based model of Pichia pastoris metabolism under data scarcity. BMC Syst Biol 4:115

    Article  PubMed Central  PubMed  Google Scholar 

  24. Tortajada M, Llaneras F, Ramón D, Picó J (2012) Estimation of recombinant protein production in Pichia pastoris based on a constraint-based model. J Process Control 22:1139–1151

    Article  CAS  Google Scholar 

  25. Llaneras F, Picó J (2007) A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient. BMC Bioinformatics 8:421

    Article  PubMed Central  PubMed  Google Scholar 

  26. Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433–448

    Article  CAS  PubMed  Google Scholar 

  27. Szyperski T, Glaser RW, Hochuli M, Fiaux J, Sauer U, Bailey JE, Wuthrich K (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metab Eng 1:189–197

    Article  CAS  PubMed  Google Scholar 

  28. Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wuthrich K, Bailey JE (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679–6688

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Solà A, Jouhten P, Maaheimo H, Sanchez-Ferrando F, Szyperski T, Ferrer P (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153:281–290

    Article  PubMed  Google Scholar 

  30. Solà A, Maaheimo H, Ylonen K, Ferrer P, Szyperski T (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur J Biochem 271:2462–2470

    Article  PubMed  Google Scholar 

  31. Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem 325:308–316

    Article  CAS  PubMed  Google Scholar 

  32. Wiechert W, Mollney M, Isermann N, Wurzel M, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66:69–85

    Article  CAS  PubMed  Google Scholar 

  33. van Winden WA, Heijnen JJ, Verheijen PJ (2002) Cumulative bondomers: a new concept in flux analysis from 2D [13C,1H] COSY NMR data. Biotechnol Bioeng 80:731–745

    Article  PubMed  Google Scholar 

  34. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Nöh K, Wiechert W (2006) Experimental design principles for isotopically instationary 13C labeling experiments. Biotechnol Bioeng 94:234–251

    Article  PubMed  Google Scholar 

  36. Wiechert W, Wurzel M (2001) Metabolic isotopomer labeling systems. Part I: global dynamic behavior. Math Biosci 169:173–205

    Article  CAS  PubMed  Google Scholar 

  37. Carnicer M, Canelas AB, ten Pierick A, Zeng Z, van Dam J, Albiol J, Ferrer P, Heijnen JJ, van Gulik W (2012) Development of quantitative metabolomics for Pichia pastoris. Metabolomics 8:284–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Jordà J, Suarez C, Carnicer M, ten Pierick A, Heijnen JJ, van Gulik W, Wahl A, Ferrer P, Albiol J (2014) Quantitative metabolomics and instationary 13C-metabolic flux analysis reveals impact of recombinant protein production on trehalose and energy metabolism in Pichia pastoris. Metabolites 4(2):281–299

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hensing MC, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT (1995) Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie Van Leeuwenhoek 67:261–279

    Article  CAS  PubMed  Google Scholar 

  40. Resina D, Cos O, Ferrer P, Valero F (2005) Developing high cell density fed-batch cultivation strategies for heterologous protein production in Pichia pastoris using the nitrogen source-regulated FLD1 Promoter. Biotechnol Bioeng 91:760–767

    Article  CAS  PubMed  Google Scholar 

  41. Maurer M, Kuhleitner M, Gasser B, Mattanovich D (2006) Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris. Microb Cell Fact 5:37

    Article  PubMed Central  PubMed  Google Scholar 

  42. Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ramon R, Ferrer P, Valero F (2007) Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol 130:39–46

    Article  CAS  PubMed  Google Scholar 

  44. Jungo C, Marison I, von Stockar U (2007) Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: a quantitative study based on concentration gradients in transient continuous cultures. J Biotechnol 128:824–837

    Article  CAS  PubMed  Google Scholar 

  45. Arnau C, Casas C, Valero F (2011) The effect of glycerol mixed substrate on the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system. Biochem Eng J 57:30–37

    Article  CAS  Google Scholar 

  46. Wang Z, Wang Y, Zhang D, Li J, Hua Z, Du G, Chen J (2010) Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation. Bioresour Technol 101:1318–1323

    Article  CAS  PubMed  Google Scholar 

  47. Blank LM, Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150:1085–1093

    Article  CAS  PubMed  Google Scholar 

  48. Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558

    Article  CAS  PubMed  Google Scholar 

  49. Bakker BM, Overkamp KM, van Maris AJ, Kotter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  CAS  PubMed  Google Scholar 

  50. Valadi A, Granath K, Gustafsson L, Adler L (2004) Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 279:39677–39685

    Article  CAS  PubMed  Google Scholar 

  51. Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S (2012) A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 14:366–379

    Article  CAS  PubMed  Google Scholar 

  52. Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO (2005) Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes. Bioprocess Biosyst Eng 27:399–406

    Article  CAS  PubMed  Google Scholar 

  53. Berdichevsky M, d’Anjou M, Mallem MR, Shaikh SS, Potgieter TI (2011) Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. J Biotechnol 155:217–224

    Article  CAS  PubMed  Google Scholar 

  54. Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattanovich D (2008) Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng 100:177–183

    Article  CAS  PubMed  Google Scholar 

  55. Jouhten P, Rintala E, Huuskonen A, Tamminen A, Toivari M, Wiebe M, Ruohonen L, Penttilä M, Maaheimo H (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Syst Biol 2:60

    Article  PubMed Central  PubMed  Google Scholar 

  56. Fiaux J, Cakar ZP, Sonderegger M, Wuthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Trotsenko YA, Bystrykh LV, Ubiyvovk VM (1984) Regulatory aspects of methanol metabolism in yeasts. In: Crawford RL, Hanson RS (eds) Proceedings of the 4th international symposium on microbial growth on one carbon compounds. ASM Press, Washington, DC, pp 118–122

    Google Scholar 

  58. Babel W, Muller RH (1985) Mixed substrate utilization in microorganisms—biochemical aspects and energetics. J Gen Microbiol 131:39–45

    CAS  Google Scholar 

  59. Jordà J, Suarez CA, Carnicer M, ten Pierick A, Heijnen JJ, van Gulik W, Ferrer P, Albiol J, Wahl A (2013) Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis. BMC Syst Biol 7:17

    Article  PubMed Central  PubMed  Google Scholar 

  60. Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 8:1380–1392

    Article  CAS  PubMed  Google Scholar 

  61. Resina D, Bollok M, Khatri NK, Valero F, Neubauer P, Ferrer P (2007) Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction. Microb Cell Fact 6:21

    Article  PubMed Central  PubMed  Google Scholar 

  62. Delic M, Rebnegger C, Wanka F, Puxbaum V, Haberhauer-Troyer C, Hann S, Kollensperger G, Mattanovich D, Gasser B (2012) Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med 52:2000–2012

    Article  CAS  PubMed  Google Scholar 

  63. Zhu T, Guo M, Zhuang Y, Chu J, Zhang S (2011) Understanding the effect of foreign gene dosage on the physiology of Pichia pastoris by transcriptional analysis of key genes. Appl Microbiol Biotechnol 89:1127–1135

    Article  CAS  PubMed  Google Scholar 

  64. Driouch H, Melzer G, Wittmann C (2012) Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng 14:47–58

    Article  CAS  PubMed  Google Scholar 

  65. Parrou JL, Teste MA, Francois J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900

    Article  CAS  PubMed  Google Scholar 

  66. Niklas J, Schneider K, Heinzle E (2010) Metabolic flux analysis in eukaryotes. Curr Opin Biotechnol 21:63–69

    Article  CAS  PubMed  Google Scholar 

  67. Haberhauer-Troyer C, Delic M, Gasser B, Mattanovich D, Hann S, Koellensperger G (2013) Accurate quantification of the redox-sensitive GSH/GSSG ratios in the yeast Pichia pastoris by HILIC-MS/MS. Anal Bioanal Chem 405:2031–2039

    Article  CAS  PubMed  Google Scholar 

  68. Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY (2010) Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechnol J 5:705–715

    Article  CAS  PubMed  Google Scholar 

  69. Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee H, Lee DY (2010) Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact 9:50

    Article  PubMed Central  PubMed  Google Scholar 

  70. Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J (2012) Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Syst Biol 6:24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Chung BK, Lakshmanan M, Klement M, Ching CB, Lee DY (2013) Metabolic reconstruction and flux analysis of industrial Pichia yeasts. Appl Microbiol Biotechnol 97:1865–1873

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We appreciate the support by the Spanish Ministry of Science and Innovation (CICYT project CTQ2010-15131) and the Catalan Government (contract grant 2009-SGR-281, Xarxa de Referència en Biotecnologia and AGAUR Project grant 2010 CONE3-00063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Ferrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ferrer, P., Albiol, J. (2014). 13C-Based Metabolic Flux Analysis of Recombinant Pichia pastoris . In: Krömer, J., Nielsen, L., Blank, L. (eds) Metabolic Flux Analysis. Methods in Molecular Biology, vol 1191. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1170-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1170-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1169-1

  • Online ISBN: 978-1-4939-1170-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics