Skip to main content

Probing Regional Mechanical Properties of Embryonic Tissue Using Microindentation and Optical Coherence Tomography

  • Protocol
  • First Online:
Tissue Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1189))

Abstract

Physical forces regulate morphogenetic movements and the mechanical properties of embryonic tissues during development. Such quantities are closely interrelated, as increases in material stiffness can limit force-induced deformations and vice versa. Here we present a minimally invasive method to quantify spatiotemporal changes in mechanical properties during morphogenesis. Regional stiffness is measured using microindentation, while displacement and strain distributions near the indenter are computed from the motion of tissue labels tracked from 3-D optical coherence tomography (OCT) images. Applied forces, displacements, and strain distributions are then used in conjunction with finite-element models to estimate regional material properties. This method is applicable to a wide variety of experimental systems and can be used to better understand the dynamic interrelation between tissue deformations and material properties that occur during time-lapse studies of embryogenesis. Such information is important to improve our understanding of the etiology of congenital disease where dynamic changes in mechanical properties are likely involved, such as situs inversus in the heart, hydrocephalus in the brain, and microphthalmia in the eye.

Benjamen A. Filas and Gang Xu are contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gregg CL, Butcher JT (2012) Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation 84:149–162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Trier SM, Davidson LA (2011) Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Curr Opin Genet Dev 21:664–670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Davidson L, Keller R (2007) Measuring mechanical properties of embryos and embryonic tissues. Methods Cell Biol 83:425–439

    Article  PubMed  CAS  Google Scholar 

  4. Davidson L, von Dassow M, Zhou J (2009) Multi-scale mechanics from molecules to morphogenesis. Int J Biochem Cell Biol 41:2147–2162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10:34–43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Lee SJ, Sun J, Flint JJ et al (2011) Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials. J Biomed Mater Res B 97:84–95

    Article  CAS  Google Scholar 

  7. Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21:1361–1367

    Article  PubMed  CAS  Google Scholar 

  8. Filas BA, Efimov IR, Taber LA (2007) Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat Rec 290:1057–1068

    Article  Google Scholar 

  9. Jenkins MW, Watanabe M, Rollins AM (2012) Longitudinal imaging of heart development with optical coherence tomography. IEEE J Select Top Quantum Electron 18:1166–1175

    Article  CAS  Google Scholar 

  10. Rugonyi S, Shaut C, Liu A et al (2008) Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation. Phys Med Biol 53:5077–5091

    Article  PubMed  Google Scholar 

  11. Syed SH, Larin KV, Dickinson ME et al (2011) Optical coherence tomography for high-resolution imaging of mouse development in utero. J Biomed Opt 16:046004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Larina IV, Larin KV, Justice MJ et al (2011) Optical coherence tomography for live imaging of mammalian development. Curr Opin Genet Dev 21:579–584

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Filas BA, Knutsen AK, Bayly PV et al (2008) A new method for measuring deformation of folding surfaces during morphogenesis. J Biomech Eng 130:61010

    Article  Google Scholar 

  14. Zamir EA, Srinivasan V, Perucchio R et al (2003) Mechanical asymmetry in the embryonic chick heart during looping. Ann Biomed Eng 31:1327–1336

    Article  PubMed  Google Scholar 

  15. Zamir EA, Taber LA (2004) Material properties and residual stress in the stage 12 chick heart during cardiac looping. J Biomech Eng 126:823–830

    Article  PubMed  Google Scholar 

  16. Xu G, Kemp PS, Hwu JA et al (2010) Opening angles and material properties of the early embryonic chick brain. J Biomech Eng 132:011005

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zahalak GI, McConnaughey WB, Elson EL (1990) Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J Biomech Eng 112:283–294

    Article  PubMed  CAS  Google Scholar 

  18. Lam V, Wakatsuki T (2011) Hydrogel tissue construct-based high-content compound screening. J Biomol Screen 16:120–128

    Article  PubMed  CAS  Google Scholar 

  19. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morph 88:49–92

    Article  PubMed  CAS  Google Scholar 

  20. Filas BA, Varner VD, Voronov DA et al (2011) Tracking morphogenetic tissue deformations in the early chick embryo. J Vis Exp e3129

    Google Scholar 

  21. Voronov DA, Taber LA (2002) Cardiac looping in experimental conditions: the effects of extraembryonic forces. Dev Dyn 224:413–421

    Article  PubMed  Google Scholar 

  22. Hashima AR, Young AA, McCulloch AD et al (1993) Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J Biomech 26:19–35

    Article  PubMed  CAS  Google Scholar 

  23. Guccione JM, McCulloch AD, Waldman LK (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113:42–55

    Article  PubMed  CAS  Google Scholar 

  24. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  25. Chapman SC, Collignon J, Schoenwolf GC et al (2001) Improved method for chick whole-embryo culture using a filter paper carrier. Dev Dyn 220:284–289

    Article  PubMed  CAS  Google Scholar 

  26. Kindberg K, Karlsson M, Ingels NB et al (2007) Nonhomogeneous strain from sparse marker arrays for analysis of transmural myocardial mechanics. J Biomech Eng 129:603–610

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Michelle Faits and Dr. Daniel Kerschensteiner (Washington University School of Medicine, Ophthalmology and Visual Sciences) for generous training and access to their gene gun. This work was supported by NIH grants R01 GM075200 and R01 NS070918 (LAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry A. Taber Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Filas, B.A., Xu, G., Taber, L.A. (2015). Probing Regional Mechanical Properties of Embryonic Tissue Using Microindentation and Optical Coherence Tomography. In: Nelson, C. (eds) Tissue Morphogenesis. Methods in Molecular Biology, vol 1189. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1164-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1164-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1163-9

  • Online ISBN: 978-1-4939-1164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics