Methods of Purification of CTL-Derived Exosomes

  • Angela MontecalvoEmail author
  • Adriana T. Larregina
  • Adrian E. Morelli
Part of the Methods in Molecular Biology book series (MIMB, volume 1186)


Exosomes are membrane nanovesicles (approximately <120 nm in size) released by most, if not all, living cells and in particular by leukocytes. They originate within the endocytic compartment by invagination of the endosome membrane. Therefore, they have a different biogenesis and molecular composition than microvesicles (>0.2 μm) shed from the plasma membrane. Although the functions of exosomes in vivo are beginning to be elucidated, increasing evidence suggests that exosomes constitute a mechanism of cell-to-cell communication, transferring antigens, proteins, mRNAs, and noncoding RNAs among cells. Interestingly, effector T cells including cytotoxic T lymphocytes (CTLs) release death-inducing molecules of the TNF superfamily through exosomes contained in their cytotoxic granules. The present chapter provides basic protocols for purification of exosomes secreted by CTLs.

Key words

Exosomes T cells 



We thank the Research Specialists Olga A. Tkacheva and William J. Shufesky (University of Pittsburgh, Pittsburgh, PA, USA) for their comments. We also thank Dr. Lawrence P. Kane for his revisions. This work was supported by the National Institutes of Health grant AI077511 (to A.T.L.), and funds from the T.E. Starzl Transplantation Institute (to A.E.M.).


  1. 1.
    Stinchcombe JC, Griffiths GM (2003) The role of the secretory immunological synapse in killing by CD8+ CTL. Semin Immunol 15:301–305PubMedCrossRefGoogle Scholar
  2. 2.
    Peters PJ, Geuze HJ, Van der Donk HA et al (1989) Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol 19:1469–1475PubMedCrossRefGoogle Scholar
  3. 3.
    Monks CR, Freiberg BA, Kupfer H et al (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86PubMedCrossRefGoogle Scholar
  4. 4.
    Stinchcombe JC, Bossi G, Booth S et al (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15:751–761PubMedCrossRefGoogle Scholar
  5. 5.
    Peters PJ, Borst J, Oorschot V et al (1991) Cytotoxic T lymphocytes granules are secretory lysosomes containing both perforin and granzymes. J Exp Med 173:1099–1109PubMedCrossRefGoogle Scholar
  6. 6.
    Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cells surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5:90–96PubMedCrossRefGoogle Scholar
  7. 7.
    Martinez-Lorenzo MJ, Anel A, Gamen S et al (1999) Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol 163:1274–1281PubMedGoogle Scholar
  8. 8.
    Monleon I, Martinez-Lorenzo MJ, Monteagudo L et al (2001) Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167:6736–6744PubMedCrossRefGoogle Scholar
  9. 9.
    Lettau M, Schmidt H, Kabelitz D et al (2007) Secretory lysosomes and their cargo in T and NK cells. Immunol Lett 108:10–19PubMedCrossRefGoogle Scholar
  10. 10.
    Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131PubMedCrossRefGoogle Scholar
  11. 11.
    Stoorvogel W, Kleijmeer MJ, Geuze HJ et al (2002) The biogenesis and functions of exosomes. Traffic 3:321–330PubMedCrossRefGoogle Scholar
  12. 12.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579PubMedGoogle Scholar
  13. 13.
    Buschow SI, Nolte-‘tHoen ENM, Van Niel G et al (2009) MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10:1528–1542PubMedCrossRefGoogle Scholar
  14. 14.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Cocucci E, Racchetti G, Meldolesi J (2008) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51CrossRefGoogle Scholar
  16. 16.
    Johnstone RM, Adam M, Hammond JR et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420PubMedGoogle Scholar
  17. 17.
    Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172PubMedCrossRefGoogle Scholar
  18. 18.
    Thery C, Regnault A, Garin J et al (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Raposo G, Tenza D, Mecheri S et al (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8:2631–2645PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Heijnen HF, Schiel AE, Fijnheer R et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799PubMedGoogle Scholar
  21. 21.
    van Niel G, Raposo G, Candalh C et al (2001) Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121:337–349PubMedCrossRefGoogle Scholar
  22. 22.
    Wolfers J, Lozier A, Raposo G et al (2001) Tumor-derived exosomes are a source of shared tumor antigens for CTL cross-priming. Nat Med 7:297–303PubMedCrossRefGoogle Scholar
  23. 23.
    Caby MP, Lankar D, Vincendeau-Scherrer C et al (2005) Exosome-like vesicles are present in human blood plasma. Int Immunol 17:879–887PubMedCrossRefGoogle Scholar
  24. 24.
    Pisitkum T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373CrossRefGoogle Scholar
  25. 25.
    Admyre C, Grunewald J, Thyberg S et al (2003) Exosomes with major histocompatibility complex II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22:578–583PubMedCrossRefGoogle Scholar
  26. 26.
    Andre F, Schartz NE, Movassagh M et al (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305PubMedCrossRefGoogle Scholar
  27. 27.
    Morelli AE, Larregina AT, Shufesky WJ et al (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–3266PubMedCrossRefGoogle Scholar
  28. 28.
    Montecalvo A, Shufesky WJ, Beer Stolz D et al (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T-cell allorecognition. J Immunol 180:3081–3090PubMedCrossRefGoogle Scholar
  29. 29.
    Feng D (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11:675–687PubMedCrossRefGoogle Scholar
  30. 30.
    Thery C, Boussac M, Veron P et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318PubMedCrossRefGoogle Scholar
  31. 31.
    Wubbolts R, Leckie RS, Veenhuizen PTM et al (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. J Biol Chem 278:10963–10972PubMedCrossRefGoogle Scholar
  32. 32.
    Trajkovic K, Hsu C, Chiantia S et al (2009) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247CrossRefGoogle Scholar
  33. 33.
    Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefGoogle Scholar
  34. 34.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21PubMedCrossRefGoogle Scholar
  35. 35.
    Piper Hunter M, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3:e3694CrossRefGoogle Scholar
  36. 36.
    Skog J, Wurdinger T, van Rijn S et al (2008) Gliobastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ohshima K, Inoue K, Fujiwara A et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5:e13247PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593PubMedGoogle Scholar
  39. 39.
    Fevrier B, Vilette D, Archer F et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101:9683–9688PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Rajendran L, Honsho M, Zahn TR et al (2006) Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103:11172–11177PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Pegtel M, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Mittelbrunn, M., Gutierrez-Vasquez, C., Villarroya-Beltri, C., et al. (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2, 282. DOI:10:1038/ncomms1285.Google Scholar
  43. 43.
    Thery C, Duban L, Segura E et al (2002) Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162PubMedCrossRefGoogle Scholar
  44. 44.
    Montecalvo A, Larregina AT, Shufesky WJ et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 19:756–766CrossRefGoogle Scholar
  45. 45.
    Muntasell A, Berger AC, Roche PA (2007) T Cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J 26:4263–4272PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Admyre C, Bohle B, Johansson SM et al (2007) B Cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce Th2-like cytokines. J Allergy Clin Immunol 120:1418–1424PubMedCrossRefGoogle Scholar
  47. 47.
    Denzer K, van Eijk M, Kleijmeer MJ et al (2000) Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol 165:1259–1265PubMedCrossRefGoogle Scholar
  48. 48.
    Blanchard N, Lankar D, Faure F et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J Immunol 168:3235–3241PubMedCrossRefGoogle Scholar
  49. 49.
    Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600PubMedCrossRefGoogle Scholar
  50. 50.
    Del Cacho E, Gallego M, Lee SH et al (2012) Induction of protective immunity against Eimeria tenella, Eimeira maxima, and Eimeria acervulina infections using DC-derived exosomes. Infect Immun 80:1909–1916PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Kim SH, Lechman ER, Bianco N et al (2005) Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen induced arthritis. J Immunol 174:6440–6448PubMedCrossRefGoogle Scholar
  52. 52.
    Prado N, Marazuela EV, Segura E et al (2008) Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol 181:1519–1525PubMedCrossRefGoogle Scholar
  53. 53.
    Peche H, Renaudin K, Beriou G et al (2005) Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transplant 6:1541–1550CrossRefGoogle Scholar
  54. 54.
    Andreola G, Rivoltini L, Castelli C et al (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Huber V, Fais S, Iero M et al (2005) Human colorectal cancer cells induced T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804PubMedCrossRefGoogle Scholar
  56. 56.
    Klibi J, Niki T, Riedel A et al (2009) Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 113:1957–1966PubMedCrossRefGoogle Scholar
  57. 57.
    Taylor DD, Gercel-Taylor C, Lyons KS et al (2003) T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res 9:5113–5119PubMedGoogle Scholar
  58. 58.
    Valenti R, Huber V, Filipazzi P et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298PubMedCrossRefGoogle Scholar
  59. 59.
    Xiang X, Liu Y, Zhuang X et al (2010) TLR2-mediated expansion of MDSCs is dependent on the source of tumor exosomes. Am J Pathol 177:1606–1610PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Mignot G, Chalmin F, Ladoire S et al (2011) Tumor exosome-mediated MDSC activation. Am J Pathol 178:1403–1404PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Liu Y, Xiang X, Zhuang X et al (2010) Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol 176:2490–2499PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Chalmin F, Ladoire S, Mignot G et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471PubMedCentralPubMedGoogle Scholar
  63. 63.
    Blott EJ, Bossi G, Clark R et al (2001) Fas ligand is targeted to secretory lysosomes via a proline-rich domain in its cytoplasmic tail. J Cell Sci 114:2405–2416PubMedGoogle Scholar
  64. 64.
    Zuccato E, Blott EJ, Holt O et al (2007) Sorting of Fas ligand to secretory lysosomes is regulated by mono-ubiquitylation and phosphorylation. J Cell Sci 120:191–199PubMedCrossRefGoogle Scholar
  65. 65.
    Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452PubMedCrossRefGoogle Scholar
  66. 66.
    Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11:556–566PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Cai Z, Yang F, Yu L et al (2012) Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol 188:5954–5961PubMedCrossRefGoogle Scholar
  68. 68.
    Lugini L, Cecchetti S, Huber V et al (2012) Immune surveillance properties of human NK cell-derived exosomes. J Immunol 189:2833–2842PubMedCrossRefGoogle Scholar
  69. 69.
    Munich S, Sobo-Vujanovic A, Buchser WJ et al (2012) Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology 1:1074–1083PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Frangsmyr L, Baranov V, Nagaeva O et al (2005) Cytoplasmic microvesicular form of Fas ligand in human early placenta: switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol Hum Reprod 11:35–41PubMedCrossRefGoogle Scholar
  71. 71.
    Jodo S, Strehlow D, Ju S-T (2000) Bioactivities of Fas ligand-expressing retroviral particles. J Immunol 164:5062–5069PubMedCrossRefGoogle Scholar
  72. 72.
    Jodo S, Hohlbaum AM, Xiao S et al (2000) CD95 (Fas) ligand-expressing vesicles display antibody-mediated, FcR-dependent enhancement of cytotoxicity. J Immunol 165:5487–5494PubMedCrossRefGoogle Scholar
  73. 73.
    Lamparski HG, Metha-Damani A, Yao J-Y et al (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270:211–226PubMedCrossRefGoogle Scholar
  74. 74.
    Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Thery C, Clayton A, Amigorena S et al (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocol in cell biology. Wiley, New York, pp 3.22.1–3.22.29Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Angela Montecalvo
    • 1
    Email author
  • Adriana T. Larregina
    • 1
    • 2
  • Adrian E. Morelli
    • 1
    • 3
    • 4
  1. 1.Department of Immunology, University of Pittsburgh Medical Center, University of Pittsburgh School of MedicineUniversity of PittsburghPittsburghUSA
  2. 2.Department of Dermatology, University of Pittsburgh Medical Center, University of Pittsburgh School of MedicineUniversity of PittsburghPittsburghUSA
  3. 3.Department of Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of MedicineUniversity of PittsburghPittsburghUSA
  4. 4.Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical CenterUniversity of PittsburghPittsburghUSA

Personalised recommendations