Skip to main content

SILAC Labeling of Yeast for the Study of Membrane Protein Complexes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

Abstract

Despite their simplicity compared to multicellular organisms, single-celled yeasts such as the baker’s yeast Saccharomyces cerevisiae are widely recognized as model organisms for the study of eukaryotic cell biology. To gain deeper insights into the molecular mechanisms underlying cellular processes, it is of utmost interest to establish the interactome of distinct proteins and to thoroughly analyze the composition of individual protein complexes and their dynamics. Combining affinity purification of epitope-tagged proteins with high-resolution mass spectrometry and quantitative proteomics strategies, in particular stable isotope labeling by amino acids in cell culture (SILAC), represents an unbiased and powerful approach for a most accurate characterization of protein complexes. In this chapter, we provide detailed protocols for the generation of yeast strains (S. cerevisiae) amenable to SILAC-labeling, for epitope tagging of a protein of interest for affinity purification, and for the SILAC-based characterization of membrane protein complexes including the identification of stable core components and transient interaction partners.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:563–567

    Article  Google Scholar 

  2. Kolkman A, Slijper M, Heck AJ (2005) Development and application of proteomics technologies in Saccharomyces cerevisiae. Trends Biotechnol 23:598–604

    Article  CAS  PubMed  Google Scholar 

  3. Botstein D, Fink GR (2011) Yeast, an experimental organism for 21st century biology. Genetics 189:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  5. Huh WK, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  6. Gavin AC, Bosche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  PubMed  Google Scholar 

  7. Ghaemmaghami S, Huh WK, Bower K et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  PubMed  Google Scholar 

  8. Ho Y, Gruhler A, Heilbut A et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  CAS  PubMed  Google Scholar 

  9. Gavin AC, Aloy P, Grandi P et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  CAS  PubMed  Google Scholar 

  10. Krogan NJ, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  CAS  PubMed  Google Scholar 

  11. Oeljeklaus S, Meyer HE, Warscheid B (2009) New dimensions in the study of protein complexes using quantitative mass spectrometry. FEBS Lett 583:1674–1683

    Article  CAS  PubMed  Google Scholar 

  12. Jiang H, English AM (2002) Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine. J Proteome Res 1:345–350

    Article  CAS  PubMed  Google Scholar 

  13. Pratt JM, Robertson DH, Gaskell SJ et al (2002) Stable isotope labelling in vivo as an aid to protein identification in peptide mass fingerprinting. Proteomics 2:157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  15. Ong SE, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2:173–181

    Article  CAS  PubMed  Google Scholar 

  16. Gruhler A, Olsen JV, Mohammed S et al (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310–327

    Article  CAS  PubMed  Google Scholar 

  17. Bendall SC, Hughes C, Stewart MH et al (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7:1587–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bicho CC, de Lima Alves F, Chen ZA et al (2010) A genetic engineering solution to the “arginine conversion problem” in stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics 9:1567–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  CAS  PubMed  Google Scholar 

  20. Van Hoof D, Pinkse MW, Oostwaard DW et al (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 4:677–678

    Article  PubMed  Google Scholar 

  21. Wang X, Huang L (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol Cell Proteomics 7:46–57

    Article  PubMed  Google Scholar 

  22. Fang L, Wang X, Yamoah K et al (2008) Characterization of the human COP9 signalosome complex using affinity purification and mass spectrometry. J Proteome Res 7:4914–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mousson F, Kolkman A, Pijnappel WW et al (2008) Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Mol Cell Proteomics 7:845–852

    Article  CAS  PubMed  Google Scholar 

  24. Oeljeklaus S, Reinartz BS, Wolf J et al (2012) Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. J Proteome Res 11:2567–2580

    Article  CAS  PubMed  Google Scholar 

  25. David C, Koch J, Oeljeklaus S et al (2013) A combined approach of quantitative interaction proteomics and live-cell imaging reveals a regulatory role for ER reticulon homology proteins in peroxisome biogenesis. Mol Cell Proteomics 12:2408–2425

    Article  CAS  PubMed  Google Scholar 

  26. Gebert N, Gebert M, Oeljeklaus S et al (2011) Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Mol Cell 44:811–818

    Article  CAS  PubMed  Google Scholar 

  27. Gebert M, Schrempp SG, Mehnert CS et al (2012) Mgr2 promotes coupling of the mitochondrial presequence translocase to partner complexes. J Cell Biol 197:595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stroud DA, Oeljeklaus S, Wiese S et al (2011) Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. J Mol Biol 413:743–750

    Article  CAS  PubMed  Google Scholar 

  29. von der Malsburg K, Muller JM, Bohnert M et al (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21:694–707

    Article  PubMed  Google Scholar 

  30. Qiu J, Wenz LS, Zerbes RM et al (2013) Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154:596–608

    Article  CAS  PubMed  Google Scholar 

  31. Spencer F, Ketner G, Connelly C et al (1993) Targeted recombination-based cloning and manipulation of large DNA segments in yeast. Methods 5:161–175

    Article  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  34. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda, a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  35. Knop M, Siegers K, Pereira G et al (1999) Epitope tagging of yeast genes using a PCR-based strategy, more tags and improved practical routines. Yeast 15:963–972

    Article  CAS  PubMed  Google Scholar 

  36. Thompson JR, Register E, Curotto J et al (1998) An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast 14:565–571

    Article  CAS  PubMed  Google Scholar 

  37. Piechura H, Oeljeklaus S, Warscheid B (2012) SILAC for the study of mammalian cell lines and yeast protein complexes. Methods Mol Biol 893:201–221

    Article  CAS  PubMed  Google Scholar 

  38. Hubner NC, Bird AW, Cox J et al (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189:739–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gueldener U, Heinisch J, Koehler GJ et al (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gueldener U, Heck S, Fielder T et al (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemein-schaft, Forschergruppe 1905 and the Excellence Initiative of the German Federal and State Governments (EXC 294 BIOSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Warscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Oeljeklaus, S., Schummer, A., Suppanz, I., Warscheid, B. (2014). SILAC Labeling of Yeast for the Study of Membrane Protein Complexes. In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics