Global Ubiquitination Analysis by SILAC in Mammalian Cells

Part of the Methods in Molecular Biology book series (MIMB, volume 1188)


Ubiquitination is a versatile and dynamic posttranslational modification in cells, regulating almost all cellular events. With rapid developments of affinity capture reagents and high-resolution mass spectrometry, it is now feasible to globally analyze the ubiquitinated proteome (ubiquitome) using quantitative strategies, such as stable isotope labeling with amino acids in cell culture (SILAC). Here we describe in detail a SILAC protocol to profile the ubiquitome in mammalian cells including protein labeling, antibody-based enrichment, and analysis by mass spectrometry.

Key words

Ubiquitin SILAC Antibody Quantitative proteomics Mass spectrometry 



This work was partially supported by National Institutes of Health grant NS081571 and American Cancer Society grant RSG-09-181, and ALSAC (American Lebanese Syrian Associated Charities).


  1. 1.
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229PubMedCrossRefGoogle Scholar
  2. 2.
    Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96PubMedCrossRefGoogle Scholar
  3. 3.
    Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926PubMedCrossRefGoogle Scholar
  4. 4.
    Kim W, Bennett EJ, Huttlin EL et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Wagner SA, Beli P, Weinert BT et al (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 11:1578–1585PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kulathu Y, Komander D (2012) Atypical ubiquitylation – the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13:508–523PubMedCrossRefGoogle Scholar
  7. 7.
    Meierhofer D, Wang X, Huang L et al (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kirkpatrick DS, Denison C, Gygi SP (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7:750–757PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Xu P, Peng J (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta 1764:1940–1947PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Franco M, Seyfried NT, Brand AH et al (2011) A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 10(M110):002188PubMedGoogle Scholar
  11. 11.
    Chen PC, Na CH, Peng J (2012) Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 43:1049–1060PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bustos D, Bakalarski CE, Yang Y et al (2012) Characterizing ubiquitination sites by peptide-based immunoaffinity enrichment. Mol Cell Proteomics 11:1529–1540PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lee KA, Hammerle LP, Andrews PS et al (2011) Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 286:41530–41538PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Emanuele MJ, Elia AE, Xu Q et al (2011) Global identification of modular cullin-RING ligase substrates. Cell 147:459–474PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Wagner SA, Beli P, Weinert BT et al (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(M111):013284PubMedGoogle Scholar
  17. 17.
    Udeshi ND, Mani DR, Eisenhaure T et al (2012) Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics 11:148–159PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Na CH, Jones DR, Yang Y et al (2012) Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J Proteome Res 11:4722–4732PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660PubMedCrossRefGoogle Scholar
  20. 20.
    Xu P, Duong DM, Seyfried NT et al (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Eng J, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989PubMedCrossRefGoogle Scholar
  22. 22.
    Xu P, Duong DM, Peng J (2009) Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 8:3944–3950PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214PubMedCrossRefGoogle Scholar
  24. 24.
    Seyfried NT, Xu P, Duong DM et al (2008) Systematic approach for validating the ubiquitinated proteome. Anal Chem 80:4161–4169PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Seyfried NT, Gozal YM, Dammer EB et al (2010) Multiplex SILAC analysis of a cellular TDP-43 proteinopathy model reveals protein inclusions associated with SUMOylation and diverse polyubiquitin chains. Mol Cell Proteomics 9:705–718PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Larance M, Bailly AP, Pourkarimi E et al (2011) Stable-isotope labeling with amino acids in nematodes. Nat Methods 8:849–851PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Xu P, Tan H, Duong DM et al (2012) Stable isotope labeling with amino acids in Drosophila for quantifying proteins and modifications. J Proteome Res 11:4403–4412PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kruger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364PubMedCrossRefGoogle Scholar
  30. 30.
    Nielsen ML, Vermeulen M, Bonaldi T et al (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5:459–460PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Structural Biology, St. Jude Proteomics FacilitySt Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of Developmental Neurobiology, St. Jude Proteomics FacilitySt Jude Children’s Research HospitalMemphisUSA

Personalised recommendations