Modeling Notch Signaling: A Practical Tutorial

  • Pau Formosa-Jordan
  • David SprinzakEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1187)


Theoretical and computational approaches for understanding different aspects of Notch signaling and Notch dependent patterning are gaining popularity in recent years. These in silico methodologies can provide dynamic insights that are often not intuitive and may help guide experiments aimed at elucidating these processes. This chapter is an introductory tutorial intended to allow someone with basic mathematical and computational knowledge to explore new mathematical models of Notch-mediated processes and perform numerical simulations of these models. In particular, we explain how to define and simulate models of lateral inhibition patterning processes. We provide a Matlab code for simulating various lateral inhibition models in a simple and intuitive manner, and show how to present the results from the computational models. This code can be used as a starting point for exploring more specific models that include additional aspects of the Notch pathway and its regulation.

Key words

Mathematical modeling Simulations Lateral inhibition Notch signaling Cis-interactions Cell-to-cell communication Pattern formation 



The code used in this manuscript was loosely based on a code written together with Michael Elowitz, Amit Lakhanpal, and Jordi Garcia-Ojalvo. We would like to thank Iftach Nachman and Oren Shaya for their instructive comments of the manuscript. D. S. would like to thank the support of the Community under a Marie Curie European Reintegration Grant and a grant from the Israel Science Foundation (grant 1021/11).


  1. 1.
    Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612PubMedCrossRefGoogle Scholar
  2. 2.
    Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126:2135–2140PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Neves J, Abelló G, Petrovic J et al (2013) Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo. Dev Growth Differ 55:96–112PubMedCrossRefGoogle Scholar
  4. 4.
    Formosa-Jordan P, Ibañes M, Ares S et al (2013) Lateral inhibition and neurogenesis: novel aspects in motion. Int J Dev Biol 57:341–350PubMedCrossRefGoogle Scholar
  5. 5.
    Collier JR, Monk NA, Maini P et al (1996) Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J Theor Biol 183:429–446PubMedCrossRefGoogle Scholar
  6. 6.
    Owen M, Sherratt J (1998) Mathematical modelling of juxtacrine cell signalling. Math Biosci 153:125–150PubMedCrossRefGoogle Scholar
  7. 7.
    Meir E, von Dassow G, Munro E et al (2002) Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr Biol 12:778–786PubMedCrossRefGoogle Scholar
  8. 8.
    Webb SD, Owen MR (2004) Oscillations and patterns in spatially discrete models for developmental intercellular signalling. J Math Biol 48:444–476PubMedCrossRefGoogle Scholar
  9. 9.
    Webb S, Owen M (2004) Intra-membrane ligand diffusion and cell shape modulate juxtacrine patterning. J Theor Biol 230:99–117PubMedCrossRefGoogle Scholar
  10. 10.
    Podgorski GJ, Bansal M, Flann NS (2007) Regular mosaic pattern development: a study of the interplay between lateral inhibition, apoptosis and differential adhesion. Theor Biol Med Model 4:43PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Buceta J, Herranz H, Canela-Xandri O et al (2007) Robustness and stability of the gene regulatory network involved in DV boundary formation in the Drosophila wing. PLoS One 2:e602PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Morelli LG, Ares S, Herrgen L et al (2009) Delayed coupling theory of vertebrate segmentation. HFSP J 3:55–66PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Formosa-Jordan P, Ibañes M (2009) Diffusible ligand and lateral inhibition dynamics for pattern formation. J Stat Mech Theor E 2009, P03019Google Scholar
  14. 14.
    Momiji H, Monk N (2009) Oscillatory Notch-pathway activity in a delay model of neuronal differentiation. Phys Rev E 80:21930CrossRefGoogle Scholar
  15. 15.
    Barad O, Rosin D, Hornstein E et al (2010) Error minimization in lateral inhibition circuits. Sci Signal 3:ra51PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen M, Georgiou M, Stevenson NL et al (2010) Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition. Dev Cell 19:78–89PubMedCrossRefGoogle Scholar
  17. 17.
    Sprinzak D, Lakhanpal A, Lebon L et al (2010) Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465:86–90PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Sprinzak D, Lakhanpal A, Lebon L et al (2011) Mutual inactivation of Notch receptors and ligands facilitates developmental patterning. PLoS Comp Biol 7:e1002069CrossRefGoogle Scholar
  19. 19.
    Shaya O, Sprinzak D (2011) From Notch signaling to fine-grained patterning: modeling meets experiments. Curr Opin Genet Dev 21:732–739PubMedCrossRefGoogle Scholar
  20. 20.
    Stamataki D, Holder M, Hodgetts C et al (2011) Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system. PLoS One 6:e24484PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Yaron A, Sprinzak D (2012) The cis side of juxtacrine signaling: a new role in the development of the nervous system. Trends Neurosci 35:230–239PubMedCrossRefGoogle Scholar
  22. 22.
    Matsuda M, Koga M, Nishida E et al (2012) Synthetic signal propagation through direct cell-cell interaction. Sci Signal 5:ra31PubMedCrossRefGoogle Scholar
  23. 23.
    Formosa-Jordan P, Ibañes M, Ares S et al (2012) Regulation of neuronal differentiation at the neurogenic wavefront. Development 139:2321–2329PubMedCrossRefGoogle Scholar
  24. 24.
    Okubo Y, Sugawara T, Abe-Koduka N et al (2012) Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nat Commun 3:1141PubMedCrossRefGoogle Scholar
  25. 25.
    Alon U (2007) An introduction to systems biology: design principles of biological circuits. CRC Press, Boca Raton, FLGoogle Scholar
  26. 26.
    Murray JD (2002) Mathematical biology. Springer, New YorkGoogle Scholar
  27. 27.
    Cross M, Greenside H (2009) Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. 28.
    Sakamoto K, Ohara O, Takagi M et al (2002) Intracellular cell-autonomous association of Notch and its ligands: a novel mechanism of Notch signal modification. Dev Biol 241:313–326PubMedCrossRefGoogle Scholar
  29. 29.
    Fiuza U, Klein T, Martinez Arias A et al (2010) Mechanisms of ligand-mediated inhibition in Notch signaling activity in Drosophila. Dev Dyn 239:798–805Google Scholar
  30. 30.
    Formosa-Jordan P, Ibañes M (2014) Competition in Notch Signaling with Cis Enriches Cell Fate Decisions. PLoS One 9:e95744Google Scholar
  31. 31.
    D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of Notch ligands. Oncogene 27:5148–5167PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Guruharsha K, Kankel M, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666PubMedCrossRefGoogle Scholar
  33. 33.
    Bollenbach T, Pantazis P, Kicheva A et al (2008) Precision of the Dpp gradient. Development 135:1137–1146PubMedCrossRefGoogle Scholar
  34. 34.
    O’Dea RD, King JR (2011) Multiscale analysis of pattern formation via intercellular signalling. Math Biosci 231:172–185PubMedCrossRefGoogle Scholar
  35. 35.
    O’Dea RD, King JR (2012) Continuum limits of pattern formation in hexagonal-cell monolayers. J Math Biol 64:579–610PubMedCrossRefGoogle Scholar
  36. 36.
    Pennington MW, Lubensky DK (2010) Switch and template pattern formation in a discrete reaction-diffusion system inspired by the Drosophila eye. Eur Phys J E Soft Matter 33:129–148PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lubensky DK, Pennington MW, Shraiman BI et al (2011) A dynamical model of ommatidial crystal formation. Proc Natl Acad Sci U S A 108:11145–11150PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Simakov DS, Pismen LM (2013) Discrete model of periodic pattern formation through a combined autocrine-juxtacrine cell signaling. Phys Biol 10:046001PubMedCrossRefGoogle Scholar
  39. 39.
    Tanemura M, Honda H, Yoshida A (1991) Distribution of differentiated cells in a cell sheet under the lateral inhibition rule of differentiation. J Theor Biol 153:287–300PubMedCrossRefGoogle Scholar
  40. 40.
    Eglen SJ, Willshaw DJ (2002) Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study. Development 129:5399–5408PubMedCrossRefGoogle Scholar
  41. 41.
    Cohen M, Baum B, Miodownik M (2011) The importance of structured noise in the generation of self-organizing tissue patterns through contact-mediated cell-cell signalling. J R Soc Interface 8:787–798PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Gardiner C (2004) Handbook of stochastic methods: for physics, chemistry & the natural sciences, vol 13, Series in synergetics. Springer, New YorkGoogle Scholar
  44. 44.
    Rudge T, Burrage K (2008) Effects of intrinsic and extrinsic noise can accelerate juxtacrine pattern formation. Bull Math Biol 70:971–991PubMedCrossRefGoogle Scholar
  45. 45.
    Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13:1398–1408PubMedCrossRefGoogle Scholar
  46. 46.
    Agrawal S, Archer C, Schaffer DV et al (2009) Computational models of the Notch network elucidate mechanisms of context-dependent signaling. PLoS Comput Biol 5:e1000390PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Petrovic J, Formosa-Jordan P, Luna-Escalante JC et al (2014) Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development 141:2313–2324Google Scholar
  48. 48.
    Schröter C, Ares S, Morelli LG et al (2012) Topology and dynamics of the zebrafish segmentation clock core circuit. PLoS Biol 10:e1001364PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Garcia-Ojalvo J (2011) Physical approaches to the dynamics of genetic circuits: a tutorial. Contemp Phys 52:439–464Google Scholar
  50. 50.
    Plahte E (2001) Pattern formation in discrete cell lattices. J Math Biol 43:411–445PubMedCrossRefGoogle Scholar
  51. 51.
    Strogatz S (2001) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Westview Press, CambridgeGoogle Scholar
  52. 52.
    Formosa-Jordan P (2013) Pattern formation through lateral inhibition mediated by Notch signaling. University of Barcelona, BarcelonaGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Structure and Constituents of Matter, PhysicsUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Biochemistry and Molecular Biology, George S Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
  3. 3.Sainsbury LaboratoryCambridge UniversityCambridgeUK

Personalised recommendations