Genetic Screens to Identify New Notch Pathway Mutants in Drosophila

  • Nikolaos GiagtzoglouEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1187)


Notch signaling controls a wide range of developmental processes, including proliferation, apoptosis, and cell fate specification during both development and adult tissue homeostasis. The functional versatility of the Notch signaling pathway is tightly linked with the complexity of its regulation in different cellular contexts. To unravel the complexity of Notch signaling, it is important to identify the different components of the Notch signaling pathway. A powerful strategy to accomplish this task is based on genetic screens. Given that the developmental context of signaling is important, these screens should be customized to specific cell populations or tissues. Here, I describe how to perform F1 clonal forward genetic screens in Drosophila to identify novel components of the Notch signaling pathway. These screens combine a classical EMS (ethyl methanesulfonate) chemical mutagenesis protocol along with clonal analysis via FRT-mediated mitotic recombination. These F1 clonal screens allow rapid phenotypic screening within clones of mutant cells induced at specific developmental stages and in tissues of interest, bypassing the pleiotropic effects of isolated mutations. More importantly, since EMS mutations have been notoriously difficult to map to specific genes in the past, I briefly discuss mapping methods that allow rapid identification of the causative mutations.

Key words

Drosophila Notch Forward genetic screen EMS mutagenesis Transposable element RNA interference 


  1. 1.
    Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11:514–522PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188PubMedCrossRefGoogle Scholar
  3. 3.
    Adams MD, Sekelsky JJ (2002) From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat Rev Genet 3:189–198PubMedCrossRefGoogle Scholar
  4. 4.
    Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23PubMedCrossRefGoogle Scholar
  5. 5.
    Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Rørth P, Szabo K, Bailey A et al (1998) Systematic gain-of-function genetics in Drosophila. Development 125:1049–1057PubMedGoogle Scholar
  7. 7.
    Rørth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A 93:12418–12422PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  9. 9.
    Thibault ST, Singer MA, Miyazaki WY et al (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36:283–287PubMedCrossRefGoogle Scholar
  10. 10.
    Bellen HJ, Levis RW, Liao G et al (2004) The BDGP gene disruption project: single transposon insertions associated with 40 % of Drosophila genes. Genetics 167:761–781PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Bischof J, Björklund M, Furger E et al (2013) A versatile platform for creating a comprehensive UAS-ORFeome library in Drosophila. Development 140:2434–2442PubMedCrossRefGoogle Scholar
  12. 12.
    Schertel C, Huang D, Björklund M et al (2013) Systematic screening of a Drosophila ORF library in vivo uncovers Wnt/Wg pathway components. Dev Cell 25:207–219PubMedCrossRefGoogle Scholar
  13. 13.
    Guruharsha KG, Rual JF, Zhai B et al (2011) A protein complex network of Drosophila melanogaster. Cell 147:690–703PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Go MJ, Artavanis-Tsakonas S (1998) A genetic screen for novel components of the notch signaling pathway during Drosophila bristle development. Genetics 150:211–220PubMedCentralPubMedGoogle Scholar
  15. 15.
    Müller D, Kugler SJ, Preiss A et al (2005) Genetic modifier screens on Hairless gain-of-function phenotypes reveal genes involved in cell differentiation, cell growth and apoptosis in Drosophila melanogaster. Genetics 171:1137–1152PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Verheyen EM, Purcell KJ, Fortini ME et al (1996) Analysis of dominant enhancers and suppressors of activated Notch in Drosophila. Genetics 144:1127–1141PubMedCentralPubMedGoogle Scholar
  17. 17.
    Xu T, Artavanis-Tsakonas S (1990) deltex, a locus interacting with the neurogenic genes, Notch, Delta and mastermind in Drosophila melanogaster. Genetics 126:665–677PubMedCentralPubMedGoogle Scholar
  18. 18.
    Xu T, Rebay I, Fleming RJ et al (1990) The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. Genes Dev 4:464–475PubMedCrossRefGoogle Scholar
  19. 19.
    Kankel MW, Hurlbut GD, Upadhyay G et al (2007) Investigating the genetic circuitry of mastermind in Drosophila, a notch signal effector. Genetics 177:2493–2505PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Shalaby NA, Parks AL, Morreale EJ et al (2009) A screen for modifiers of notch signaling uncovers Amun, a protein with a critical role in sensory organ development. Genetics 182:1061–1076PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Dietzl G, Chen D, Schnorrer F et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156PubMedCrossRefGoogle Scholar
  22. 22.
    Mummery-Widmer JL, Yamazaki M, Stoeger T et al (2009) Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458:987–992PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Saj A, Arziman Z, Stempfle D et al (2010) A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev Cell 18:862–876PubMedCrossRefGoogle Scholar
  24. 24.
    Bejarano F, Bortolamiol-Becet D, Dai Q et al (2012) A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139:2821–2831PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Schertel C, Rutishauser T, Förstemann K et al (2012) Functional characterization of Drosophila microRNAs by a novel in vivo library. Genetics 192:1543–1552PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Szuplewski S, Kugler JM, Lim SF et al (2012) MicroRNA transgene overexpression complements deficiency-based modifier screens in Drosophila. Genetics 190:617–626PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Bokel C (2008) EMS screens: from mutagenesis to screening and mapping. Methods Mol Biol 420:119–138PubMedCrossRefGoogle Scholar
  28. 28.
    Grigliatti TA (1998) Mutagenesis. In: Roberts DB (ed) Drosophila, a practical approach. Oxford Univeristy Press, Oxford, pp 55–84Google Scholar
  29. 29.
    Ashburner M, Golic KG, Hawley RS (2005) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 207–312Google Scholar
  30. 30.
    Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237PubMedGoogle Scholar
  31. 31.
    Rook JE, Theodosiou NA, Xu T (2000) Clonal analysis in the examination of gene function in Drosophila. Methods Mol Biol 137:15–22Google Scholar
  32. 32.
    Newsome TP, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127:851–860PubMedGoogle Scholar
  33. 33.
    Stowers RS, Schwarz TL (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152:1631–1639PubMedCentralPubMedGoogle Scholar
  34. 34.
    Acar M, Jafar-Nejad H, Takeuchi H et al (2008) Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132:247–258PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Giagtzoglou N, Yamamoto S, Zitserman D et al (2012) dEHBP1 controls exocytosis and recycling of Delta during asymmetric divisions. J Cell Biol 196:65–83PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Jafar-Nejad H, Andrews HK, Acar M et al (2005) Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev Cell 9:351–363PubMedCrossRefGoogle Scholar
  37. 37.
    Rajan A, Tien AC, Haueter CM et al (2009) The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nat Cell Biol 11:815–824PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Tien AC, Rajan A, Schulze KL et al (2008) Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster. J Cell Biol 182:1113–1125PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Yamamoto S, Charng WL, Rana NA et al (2012) A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science 338:1229–1232PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Charng WL, Yamamoto S, Jaiswal M et al (2013) Drosophila Tempura, a novel protein prenyltransferase α subunit, regulates Notch signaling via Rab1 and Rab11. PLoS Biol 12(1):e1001777CrossRefGoogle Scholar
  41. 41.
    Berdnik D, Török T, González-Gaitán M et al (2002) The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell 3:221–231PubMedCrossRefGoogle Scholar
  42. 42.
    Herz HM, Chen Z, Scherr H et al (2006) vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development 133:1871–1880PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Hutterer A, Knoblich JA (2005) Numb and alpha-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep 6:836–842PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Vaccari T, Bilder D (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell 9:687–698PubMedCrossRefGoogle Scholar
  45. 45.
    Yan Y, Denef N, Schupbach T (2009) The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 17:387–402PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Gallagher CM, Knoblich JA (2006) The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev Cell 11:641–653PubMedCrossRefGoogle Scholar
  47. 47.
    Yamamoto S, Charng WL, Bellen HJ (2010) Endocytosis and intracellular trafficking of Notch and its ligands. Curr Top Dev Biol 92:165–200PubMedCrossRefGoogle Scholar
  48. 48.
    Kandachar V, Roegiers F (2012) Endocytosis and control of Notch signaling. Curr Opin Cell Biol 24:534–540PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Brennan K, Tateson R, Lewis K et al (1997) A functional analysis of Notch mutations in Drosophila. Genetics 147:177–188PubMedCentralPubMedGoogle Scholar
  50. 50.
    Andrews HK, Giagtzoglou N, Yamamoto S et al (2009) Sequoia regulates cell fate decisions in the external sensory organs of adult Drosophila. EMBO Rep 10:636–641PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Hiesinger PR, Fayyazuddin A, Mehta SQ et al (2005) The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121:607–620PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Cook KR, Parks AL, Jacobus LM et al (2010) New research resources at the Bloomington Drosophila Stock Center. Fly (Austin) 4:88–91CrossRefGoogle Scholar
  53. 53.
    Cook RK, Deal ME, Deal JA et al (2010) A new resource for characterizing X-linked genes in Drosophila melanogaster: systematic coverage and subdivision of the X chromosome with nested, Y-linked duplications. Genetics 186:1095–1109PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Parks AL, Cook KR, Belvin M et al (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36:288–292PubMedCrossRefGoogle Scholar
  55. 55.
    Ryder E, Blows F, Ashburner M et al (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167:797–813PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Venken KJ, Popodi E, Holtzman SL et al (2010) A molecularly defined duplication set for the X chromosome of Drosophila melanogaster. Genetics 186:1111–1125PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Xiong B, Bayat V, Jaiswal M et al (2012) Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol 10:e1001438PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Zhang K, Li Z, Jaiswal M et al (2013) The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J Cell Biol 200:807–820PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Yamamoto S, Bayat V, Bellen HJ et al (2013) Protein phosphatase 1β limits ring canal constriction during Drosophila germline cyst formation. PLoS One 8:e70502PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Zhai RG, Hiesinger PR, Koh TW et al (2003) Mapping Drosophila mutations with molecularly defined P element insertions. Proc Natl Acad Sci U S A 100:10860–10865PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Berger J, Suzuki T, Senti KA et al (2001) Genetic mapping with SNP markers in Drosophila. Nat Genet 29:475–481PubMedCrossRefGoogle Scholar
  62. 62.
    Hoskins RA, Phan AC, Naeemuddin M et al (2001) Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res 11:1100–1113PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Schnorrer F, Ahlford A, Chen D et al (2008) Positional cloning by fast-track SNP-mapping in Drosophila melanogaster. Nat Protoc 3:1751–1765PubMedCrossRefGoogle Scholar
  64. 64.
    Martin SG, Dobi KC, St Johnston D (2001) A rapid method to map mutations in Drosophila. Genome Biol 2(9): RESEARCH0036Google Scholar
  65. 65.
    Zipperlen P, Nairz K, Rimann I et al (2005) A universal method for automated gene mapping. Genome Biol 6:R19PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Ryder E, Ashburner M, Bautista-Llacer R et al (2007) The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177:615–629PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Blumenstiel JP, Noll AC, Griffiths JA et al (2009) Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing. Genetics 182:25–32PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Hobert O (2010) The impact of whole genome sequencing on model system genetics: get ready for the ride. Genetics 184:317–319PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Wang H, Chattopadhyay A, Li Z et al (2010) Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing. Genome Res 20:981–988PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of NeurologyJan and Dan Duncan Neurological Institute, Baylor College of MedicineHoustonUSA

Personalised recommendations