Advertisement

Analyzing the Nuclear Complexes of Notch Signaling by Electrophoretic Mobility Shift Assay

  • Kelly L. Arnett
  • Stephen C. BlacklowEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1187)

Abstract

An electrophoretic mobility shift assay (EMSA) is a sensitive technique for detecting protein–DNA and protein–protein interactions in which complexes are separated by native (non-denaturing) gel electrophoresis. EMSAs can provide evidence for specific binding between components prepared from a wide range of sources, including not only highly purified proteins but also components of crude cellular extracts. EMSA experiments were critical in identifying the minimal protein requirements for assembly of transcriptionally active nuclear Notch complexes as well as the DNA sequence specificity of Notch transcription complexes. Here, we describe a radioactive EMSA protocol for detection of Notch transcription complexes.

Key words

Electrophoretic mobility shift assay (EMSA) NICD CSL MAML1 RAMANK Protein–DNA interactions Bacterial protein expression and purification 

Notes

Acknowledgements

This work was supported by NIH grants CA-092433 and CA-119070 (to S.C.B.).

References

  1. 1.
    Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776PubMedCrossRefGoogle Scholar
  2. 2.
    Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689PubMedCrossRefGoogle Scholar
  3. 3.
    Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kovall RA, Blacklow SC (2010) Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr Top Dev Biol 92:31–71PubMedCrossRefGoogle Scholar
  5. 5.
    Tamura K, Taniguchi Y, Minoguchi S et al (1995) Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 5:1416–1423PubMedCrossRefGoogle Scholar
  6. 6.
    Kovall RA, Hendrickson WA (2004) Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J 23:3441–3451PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Nam Y, Sliz P, Song L et al (2006) Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124:973–983PubMedCrossRefGoogle Scholar
  8. 8.
    Wilson JJ, Kovall RA (2006) Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124:985–996PubMedCrossRefGoogle Scholar
  9. 9.
    Weng AP, Nam Y, Wolfe MS et al (2003) Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 23:655–664PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Fryer CJ, Lamar E, Turbachova I et al (2002) Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16:1397–1411PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Wallberg AE, Pedersen K, Lendahl U et al (2002) p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 22:7812–7819PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kuroda K, Han H, Tani S et al (2003) Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 18:301–312PubMedCrossRefGoogle Scholar
  13. 13.
    Oswald F, Kostezka U, Astrahantseff K et al (2002) SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J 21:5417–5426PubMedCentralPubMedGoogle Scholar
  14. 14.
    Kao H-Y, Ordentlich P, Koyano-Nakagawa N et al (1998) A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 12:2269–2277PubMedCentralPubMedGoogle Scholar
  15. 15.
    Zhou S, Fujimuro M, Hsieh JJ et al (2000) A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J Virol 74:1939–1947PubMedCentralPubMedGoogle Scholar
  16. 16.
    Hsieh JJ, Zhou S, Chen L et al (1999) CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci U S A 96:23–28PubMedCentralPubMedGoogle Scholar
  17. 17.
    Taniguchi Y, Furukawa T, Tun T et al (1998) LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Mol Cell Biol 18:644–654PubMedCentralPubMedGoogle Scholar
  18. 18.
    Tun T, Hamaguchi Y, Matsunami N et al (1994) Recognition sequence of a highly conserved DNA binding protein RBP-J kappa. Nucleic Acids Res 22:965–971PubMedCentralPubMedGoogle Scholar
  19. 19.
    Jarriault S, Brou C, Logeat F et al (1995) Signalling downstream of activated mammalian Notch. Nature 377:355–358PubMedGoogle Scholar
  20. 20.
    Wu L, Aster J, Blacklow S et al (2000) MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26:484–489PubMedGoogle Scholar
  21. 21.
    Nam Y, Weng AP, Aster JC et al (2003) Structural requirements for assembly of the CSL.intracellular Notch1.Mastermind-like 1 transcriptional activation complex. J Biol Chem 278:21232–21239PubMedGoogle Scholar
  22. 22.
    Nam Y, Sliz P, Pear WS et al (2007) Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proc Natl Acad Sci U S A 104:2103–2108PubMedCentralPubMedGoogle Scholar
  23. 23.
    Arnett KL, Hass M, McArthur DG et al (2010) Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nat Struct Mol Biol 17:1312–1317PubMedCentralPubMedGoogle Scholar
  24. 24.
    Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525PubMedCentralPubMedGoogle Scholar
  25. 25.
    Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060PubMedCentralPubMedGoogle Scholar
  26. 26.
    Buratowski S, Chodosh LA (2001) Mobility shift DNA-binding assay using gel electrophoresis. Curr Protoc Mol Biol 36:12.2.1–12.2.11Google Scholar
  27. 27.
    Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861PubMedCentralPubMedGoogle Scholar
  28. 28.
    Berger R, Duncan MR, Berman B (1993) Nonradioactive gel mobility shift assay using chemiluminescent detection. Biotechniques 15:650–652PubMedGoogle Scholar
  29. 29.
    Pagano JM, Clingman CC, Ryder SP (2011) Quantitative approaches to monitor protein-nucleic acid interactions using fluorescent probes. RNA 17:14–20PubMedCentralPubMedGoogle Scholar
  30. 30.
    Rye HS, Drees BL, Nelson HC et al (1993) Stable fluorescent dye-DNA complexes in high sensitivity detection of protein-DNA interactions. Application to heat shock transcription factor. J Biol Chem 268:25229–25238PubMedGoogle Scholar
  31. 31.
    Jing D, Agnew J, Patton WF et al (2003) A sensitive two-color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels. Proteomics 3:1172–1180PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA

Personalised recommendations