Proteomic Analysis of the Notch Interactome

  • K. G. Guruharsha
  • Kazuya Hori
  • Robert A. Obar
  • Spyros Artavanis-TsakonasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1187)


Recent large-scale studies have provided a global description of the interactome—the whole network of protein interactions in a cell or an organism—for several model organisms. Defining protein interactions on a proteome-wide scale has led to a better understanding of the cellular functions of many proteins, especially those that have not been studied by classical molecular genetic approaches. Here we describe the resources, methods, and techniques necessary for generation of such a proteome-scale interactome in a high throughput manner. These procedures will also be applicable to low or medium throughput focused studies aimed at understanding interactions between members of specific pathways such as Notch signaling.

Key words

Notch signaling Proteomics Protein interactions Genetic interactions Interactome Integrated network 



This work was supported by NIH grants 5R01HG003616, NS26084, and CA98402 (S.A-T.), as well as a JSPS Postdoctoral Fellowship for Research Abroad (K.H.), and generation of the clone set was supported by a grant from the National Human Genome Research Institute (NHGRI P41HG3487) to our collaborator Susan Celniker.


  1. 1.
    Sanchez C, Lachaize C, Janody F et al (1999) Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res 27:89–94PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Artavanis-Tsakonas S, Muskavitch MA (2010) Notch: the past, the present, and the future. Curr Top Dev Biol 92:1–29PubMedCrossRefGoogle Scholar
  3. 3.
    Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13: 654–666PubMedCrossRefGoogle Scholar
  4. 4.
    Guruharsha KG, Rual JF, Zhai B et al (2011) A protein complex network of Drosophila melanogaster. Cell 147:690–703PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Gavin AC, Aloy P, Grandi P et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636PubMedCrossRefGoogle Scholar
  6. 6.
    Behrends C, Sowa ME, Gygi SP et al (2010) Network organization of the human autophagy system. Nature 466:68–76PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Breitkreutz A, Choi H, Sharom JR et al (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328:1043–1046PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Friedman AA, Tucker G, Singh R et al (2011) Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. Sci Signal 4:rs10PubMedCentralPubMedGoogle Scholar
  9. 9.
    Kuhner S, van Noort V, Betts MJ et al (2009) Proteome organization in a genome-reduced bacterium. Science 326:1235–1240PubMedCrossRefGoogle Scholar
  10. 10.
    Yu C, Wan KH, Hammonds AS et al (2011) Development of expression-ready constructs for generation of proteomic libraries. Methods Mol Biol 723:257–272PubMedCrossRefGoogle Scholar
  11. 11.
    Eng JK, Fischer B, Grossmann J et al (2008) A fast SEQUEST cross correlation algorithm. J Proteome Res 7:4598–4602PubMedGoogle Scholar
  12. 12.
    Huttlin EL, Jedrychowski MP, Elias JE et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Choi H, Larsen B, Lin ZY et al (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8:70–73PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hart GT, Lee I, Marcotte ER (2007) A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 8:236PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Sowa ME, Bennett EJ, Gygi SP et al (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Mellacheruvu D, Wright Z, Couzens AL et al (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10:730–736PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Vlasblom J, Wodak SJ (2009) Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics 10:99PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Brohee S, van Helden J (2006) Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7:488PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Yanagawa S, Lee JS, Ishimoto A (1998) Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling. J Biol Chem 273:32353–32359PubMedCrossRefGoogle Scholar
  22. 22.
    Cherbas L, Willingham A, Zhang D et al (2011) The transcriptional diversity of 25 Drosophila cell lines. Genome Res 21:301–314PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hori K, Sen A, Kirchhausen T et al (2011) Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J Cell Biol 195:1005–1015PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Rebay I, Fleming RJ, Fehon RG et al (1991) Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67: 687–699PubMedCrossRefGoogle Scholar
  25. 25.
    Hori K, Sen A, Tsakonas S (2014) Genetic circuitry modulating notch signals through endosomal trafficking. Methods Enzymol 534:283–299PubMedCrossRefGoogle Scholar
  26. 26.
    Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90 (2):281–291Google Scholar
  27. 27.
    Hu Y, Ye Y, Fortini ME (2002) Nicastrin is required for gamma-secretase cleavage of the Drosophila Notch receptor. Dev Cell 2 (1):69–78Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • K. G. Guruharsha
    • 1
    • 2
  • Kazuya Hori
    • 1
  • Robert A. Obar
    • 1
  • Spyros Artavanis-Tsakonas
    • 1
    Email author
  1. 1.Department of Cell BiologyHarvard Medical SchoolBostonUSA
  2. 2.Biogen IdecCambridgeUSA

Personalised recommendations