Skip to main content

Retroviral Transduction of Murine and Human Hematopoietic Progenitors and Stem Cells

  • Protocol
  • First Online:
Hematopoietic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1185))

Abstract

Genetic modification of cells using retroviral vectors is the method of choice when the cell population is difficult to transfect and/or requires persistent transgene expression in progeny cells. There are innumerable potential applications for these procedures in laboratory research and clinical therapeutic interventions. One paradigmatic example is the genetic modification of hematopoietic stem and progenitor cells (HSPCs). These are rare nucleated cells which reside in a specialized microenvironment within the bone marrow, and have the potential to self-renew and/or differentiate into all hematopoietic lineages. Due to their enormous regenerative capacity in steady state or under stress conditions these cells are routinely used in allogeneic bone marrow transplantation to reconstitute the hematopoietic system in patients with metabolic, inflammatory, malignant, and other hematologic disorders. For patients lacking a matched bone marrow donor, gene therapy of autologous hematopoietic stem cells has proven to be an alternative as highlighted recently by several successful gene therapy trials.

Genetic modification of HSPCs using retrovirus vectors requires ex vivo manipulation to efficiently introduce the new genetic material into cells (transduction). Optimal culture conditions are essential to facilitate this process while preserving the stemness of the cells. The most frequently used retroviral vector systems for the genetic modifications of HSPCs are derived either from Moloney murine leukemia-virus (Mo-MLV) or the human immunodeficiency virus-1 (HIV-1) and are generally termed according to their genus gamma-retroviral (γ-RV) or lentiviral vectors (LV), respectively. This chapter describes in a step-by-step fashion some techniques used to produce research grade vector supernatants and to obtain purified murine or human hematopoietic stem cells for transduction, as well as follow-up methods for analysis of transduced cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    CAS  PubMed  Google Scholar 

  2. Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  PubMed  Google Scholar 

  3. Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  CAS  PubMed  Google Scholar 

  4. Spangrude GJ, Johnson GR (1990) Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A 87:7433–7437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Osten P, Grinevich V, Cetin A (2007) Viral vectors: a wide range of choices and high levels of service. Handb Exp Pharmacol 178:177–202

    Article  CAS  PubMed  Google Scholar 

  6. Coffin JM, Hughes SH, Varmus HE (1997) The interactions of retroviruses and their hosts. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor, New York

    Google Scholar 

  7. Sommerfelt MA (1999) Retrovirus receptors. J Gen Virol 80:3049–3064

    CAS  PubMed  Google Scholar 

  8. Overbaugh J, Miller AD, Eiden MV (2001) Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol Mol Biol Rev 65:371–389, table of contents

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213

    Article  CAS  PubMed  Google Scholar 

  10. Risco C, Menendez-Arias L, Copeland TD et al (1995) Intracellular transport of the murine leukemia virus during acute infection of NIH 3T3 cells: nuclear import of nucleocapsid protein and integrase. J Cell Sci 108:3039–3050

    CAS  PubMed  Google Scholar 

  11. Fassati A, Goff SP (1999) Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J Virol 73:8919–8925

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Buchschacher GL et al (2004) Safety considerations associated with development and clinical application of lentiviral vector systems for gene transfer. In: Buchschacher G (ed) Current genomics, vol 5. Bentham Science Publishers, Sharjah, UAE, pp 19–35

    Google Scholar 

  13. Maetzig T, Galla M, Baum C et al (2011) Gammaretroviral vectors: biology, technology and application. Viruses 3:677–713

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  16. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Mautino MR, Morgan RA (2002) Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care STDS 16:11–26

    Article  PubMed  Google Scholar 

  18. Schambach A, Galla M, Modlich U et al (2006) Lentiviral vectors pseudotyped with murine ecotropic envelope: increased biosafety and convenience in preclinical research. Exp Hematol 34:588–592

    Article  CAS  PubMed  Google Scholar 

  19. Martinez-Salas E (1999) Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 10:458–464

    Article  CAS  PubMed  Google Scholar 

  20. Szymczak AL, Vignali DA (2005) Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin Biol Ther 5:627–638

    Article  CAS  PubMed  Google Scholar 

  21. Fehse B, Uhde A, Fehse N et al (1997) Selective immunoaffinity-based enrichment of CD34+ cells transduced with retroviral vectors containing an intracytoplasmatically truncated version of the human low-affinity nerve growth factor receptor (deltaLNGFR) gene. Hum Gene Ther 8:1815–1824

    Article  CAS  PubMed  Google Scholar 

  22. Fehse B, Richters A, Putimtseva-Scharf K et al (2000) CD34 splice variant: an attractive marker for selection of gene-modified cells. Mol Ther 1:448–456

    Article  CAS  PubMed  Google Scholar 

  23. Schambach A, Bohne J, Baum C et al (2006) Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther 13:641–645

    Article  CAS  PubMed  Google Scholar 

  24. Zufferey R, Donello JE, Trono D et al (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Buchschacher GL Jr (2001) Introduction to retroviruses and retroviral vectors. Somat Cell Mol Genet 26:1–11

    Article  PubMed  Google Scholar 

  26. Hu WS, Pathak VK (2000) Design of retroviral vectors and helper cells for gene therapy. Pharmacol Rev 52:493–511

    CAS  PubMed  Google Scholar 

  27. Williams DA, Lemischka IR, Nathan DG et al (1984) Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310:476–480

    Article  CAS  PubMed  Google Scholar 

  28. Moritz T, Patel VP, Williams DA (1994) Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J Clin Invest 93:1451–1457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hanenberg H, Xiao XL, Dilloo D et al (1996) Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 2:876–882

    Article  CAS  PubMed  Google Scholar 

  30. Donahue RE, Sorrentino BP, Hawley RG et al (2001) Fibronectin fragment CH-296 inhibits apoptosis and enhances ex vivo gene transfer by murine retrovirus and human lentivirus vectors independent of viral tropism in nonhuman primate CD34+ cells. Mol Ther 3:359–367

    Article  CAS  PubMed  Google Scholar 

  31. Aiuti A, Cattaneo F, Galimberti S et al (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458

    Article  CAS  PubMed  Google Scholar 

  32. Hacein-Bey-Abina S, Hauer J, Lim A et al (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363:355–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gaspar HB, Cooray S, Gilmour KC et al (2011) Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med 3:97ra79

    PubMed  Google Scholar 

  34. Gaspar HB, Cooray S, Gilmour KC et al (2011) Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med 3:97ra80

    PubMed  Google Scholar 

  35. Boztug K, Schmidt M, Schwarzer A et al (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 363:1918–1927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Aiuti A, Biasco L, Scaramuzza S et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341:1233151

    Article  PubMed  Google Scholar 

  37. Ott MG, Schmidt M, Schwarzwaelder K et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:401–409

    Article  CAS  PubMed  Google Scholar 

  38. Cartier N, Hacein-Bey-Abina S, Bartholomae CC et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    Article  CAS  PubMed  Google Scholar 

  39. Biffi A, Montini E, Lorioli L et al (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158

    Article  PubMed  Google Scholar 

  40. Ramezani A, Hawley TS, Hawley RG (2008) Combinatorial incorporation of enhancer-blocking components of the chicken beta-globin 5'HS4 and human T-cell receptor alpha/delta BEAD-1 insulators in self-inactivating retroviral vectors reduces their genotoxic potential. Stem Cells 26:3257–3266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gaussin A, Modlich U, Bauche C et al (2012) CTF/NF1 transcription factors act as potent genetic insulators for integrating gene transfer vectors. Gene Ther 19:15–24

    Article  CAS  PubMed  Google Scholar 

  42. Koldej RM, Carney G, Wielgosz MM et al (2013) Comparison of insulators and promoters for expression of the Wiskott-Aldrich syndrome protein using lentiviral vectors. Hum Gene Ther Clin Dev 24:77–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Pfaff N, Lachmann N, Ackermann M et al (2013) A ubiquitous chromatin opening element prevents transgene silencing in pluripotent stem cells and their differentiated progeny. Stem Cells 31:488–499

    Article  CAS  PubMed  Google Scholar 

  44. Zhang F, Frost AR, Blundell MP et al (2010) A ubiquitous chromatin opening element (UCOE) confers resistance to DNA methylation-mediated silencing of lentiviral vectors. Mol Ther 18:1640–1649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Zhang F, Thornhill SI, Howe SJ et al (2007) Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 110:1448–1457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. McDermott SP, Eppert K, Lechman ER et al (2010) Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116:193–200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript is dedicated to past and present members of the Williams’s laboratory, who have helped to develop many methods described herein. Thanks to Dr. Mathilde Gavillet, Jenna Wood for assistance and proofing the manuscript. This work was supported by NIH grants (R01 CA113969, R24 DK099808, and R01 DK062757) and the German Academic Exchange Service grant (DAAD D/12/03783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ciuculescu, M.F., Brendel, C., Harris, C.E., Williams, D.A. (2014). Retroviral Transduction of Murine and Human Hematopoietic Progenitors and Stem Cells. In: Bunting, K., Qu, CK. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Biology, vol 1185. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1133-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1133-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1132-5

  • Online ISBN: 978-1-4939-1133-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics