Antigen–Antibody Interaction Database (AgAbDb): A Compendium of Antigen–Antibody Interactions

  • Urmila Kulkarni-KaleEmail author
  • Snehal Raskar-Renuse
  • Girija Natekar-Kalantre
  • Smita A. Saxena
Part of the Methods in Molecular Biology book series (MIMB, volume 1184)


Antigen–Antibody Interaction Database (AgAbDb) is an immunoinformatics resource developed at the Bioinformatics Centre, University of Pune, and is available online at Antigen–antibody interactions are a special class of protein–protein interactions that are characterized by high affinity and strict specificity of antibodies towards their antigens. Several co-crystal structures of antigen–antibody complexes have been solved and are available in the Protein Data Bank (PDB). AgAbDb is a derived knowledgebase developed with an objective to compile, curate, and analyze determinants of interactions between the respective antigen–antibody molecules. AgAbDb lists not only the residues of binding sites of antigens and antibodies, but also interacting residue pairs. It also helps in the identification of interacting residues and buried residues that constitute antibody-binding sites of protein and peptide antigens. The Antigen–Antibody Interaction Finder (AAIF), a program developed in-house, is used to compile the molecular interactions, viz. van der Waals interactions, salt bridges, and hydrogen bonds. A module for curating water-mediated interactions has also been developed. In addition, various residue-level features, viz. accessible surface area, data on epitope segment, and secondary structural state of binding site residues, are also compiled. Apart from the PDB numbering, Wu–Kabat numbering and explicit definitions of complementarity-determining regions are provided for residues of antibodies. The molecular interactions can be visualized using the program Jmol. AgAbDb can be used as a benchmark dataset to validate algorithms for prediction of B-cell epitopes. It can as well be used to improve accuracy of existing algorithms and to design new algorithms. AgAbDb can also be used to design mimotopes representing antigens as well as aid in designing processes leading to humanization of antibodies.

Key words

Antigen Antibody Antigen–antibody complex Antigen–antibody interactions B-cell epitope Paratope Antibody-binding site Conformational or discontinuous epitope Immunoinformatics Bioinformatics Derived database 



Antigen–Antibody Interaction Finder








Antigen–Antibody Interaction Database


Accessible surface area


Buried residue


Binding site


Complementarity-determining region on heavy chain


Conformational epitope


Conformational epitope prediction




Interacting residues


Complementarity-determining region on light chain


Protein Data Bank



Dr. Urmila Kulkarni-Kale gratefully acknowledges financial support from the Department of Biotechnology (DBT), Government of India, and the Department of Science and Technology (DST), Government of India. Ms. Snehal Raskar-Renuse and Ms. Smita A. Saxena acknowledge the Department of Information Technology (DeitY), Ministry of Communications and Information Technology (MCIT), Government of India, for fellowship. Ms. Girija Natekar-Kalantre acknowledges DBT for fellowship.

Funding: This work was supported by the Center of Excellence (CoE) grant by the DBT, Govt. of India. Some modules of the AgAbDb are developed under the PURSE program of the DST, Government of India.


  1. 1.
    Goldsby RA, Kindt TJ, Osborne BA (2000) Kuby immunology, 4th edn. W. H. Freeman and Company, New YorkGoogle Scholar
  2. 2.
    Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology, 5th edn. Garland Science, New YorkGoogle Scholar
  3. 3.
    Van Oss CJ (1995) Hydrophobic, hydrophilic and other interactions in epitope-paratope binding. Mol Immunol 32:199–211PubMedCrossRefGoogle Scholar
  4. 4.
    Reverberi R, Reverberi L (2007) Factors affecting the antigen-antibody reaction. Blood Transfus 5:227–240. doi: 10.2450/2007.0047-07 PubMedCentralPubMedGoogle Scholar
  5. 5.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Davies DR, Cohen GH (1996) Interactions of protein antigens with antibodies. Proc Natl Acad Sci U S A 93:7–12PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Wilson IA, Stanfield RL (1994) Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol 4:857–867PubMedCrossRefGoogle Scholar
  8. 8.
    MacCallum RM, Martin AC, Thornton JM (1996) Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol 262:732–745PubMedCrossRefGoogle Scholar
  9. 9.
    Van Regenmortel MH (2009) What is a B-cell epitope? Methods Mol Biol 524:3–20PubMedCrossRefGoogle Scholar
  10. 10.
    Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948PubMedCrossRefGoogle Scholar
  11. 11.
    Chothia C, Gelfand I, Kister A (1998) Structural determinants in the sequences of immunoglobulin variable domain. J Mol Biol 278:457–479PubMedCrossRefGoogle Scholar
  12. 12.
    Janin J, Chothia C (1990) The structure of protein-protein recognition sites. J Biol Chem 265:16027–16030PubMedGoogle Scholar
  13. 13.
    Janin J, Miller S, Chothia C (1988) Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol 204:155–164PubMedCrossRefGoogle Scholar
  14. 14.
    Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93:13–20PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Greenbaum JA, Andersen PH, Blythe M, Bui HH, Cachau RE, Crowe J, Davies M, Kolaskar AS, Lund O, Morrison S et al (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20:75–82PubMedCrossRefGoogle Scholar
  16. 16.
    El-Manzalawy Y, Honavar V (2010) Recent advances in B-cell epitope prediction methods. Immunome Res 6(Suppl 2):S2PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Giudicelli V, Duroux P, Ginestoux C, Folch G, Jabado-Michaloud J, Chaume D, Lefranc MP (2006) IMGT/LIGM-DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res 34:D781–D784Google Scholar
  18. 18.
    Kaas Q, Ruiz M, Lefranc MP (2004) IMGT/3Dstructure-DB and IMGT/Structural Query, a database and a tool for immunoglobulin, T cell receptor and MHC structural data. Nucleic Acids Res 32:D208–D210PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, Lundegaard C, Sette A, Lund O, Bourne PE et al (2012) Immune epitope database analysis resource. Nucleic Acids Res 40:W525–W530PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Schlessinger A, Ofran Y, Yachdav G, Rost B (2006) Epitome: database of structure-inferred antigenic epitopes. Nucleic Acids Res 34: D777–D780PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Huang J, Honda W (2006) CED: a conformational epitope database. BMC Immunol 7:7PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Saha S, Bhasin M, Raghava GP (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ghate AD, Bhagwat BU, Bhosle SG, Gadepalli SM, Kulkarni-Kale UD (2007) Characterization of antibody-binding sites on proteins: development of a knowledgebase and its applications in improving epitope prediction. Protein Pept Lett 14:531–535PubMedCrossRefGoogle Scholar
  24. 24.
    Tong JC, Song CM, Tan PT, Ren EC, Sinha AA (2008) BEID: database for sequence-structure-function information on antigen-antibody interactions. Bioinformation 3:58–60PubMedCrossRefGoogle Scholar
  25. 25.
    Ponomarenko J, Papangelopoulos N, Zajonc DM, Peters B, Sette A, Bourne PE (2011) IEDB-3D: structural data within the immune epitope database. Nucleic Acids Res 39: D1164–D1170PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    He Y, Rappuoli R, De Groot AS, Chen RT (2010) Emerging vaccine informatics. J Biomed Biotechnol 2010:218590. doi: 10.1155/2010/218590 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Kulkarni-Kale U, Waman V, Raskar S, Mehta S, Saxena S (2012) Genome to vaccinome: role of bioinformatics, immunoinformatics & comparative genomics. Curr Bioinformatics (CBIO) 7:454–466CrossRefGoogle Scholar
  28. 28.
    Davies DR, Padlan EA, Sheriff S (1990) Antibody-antigen complexes. Annu Rev Biochem 59:439–473PubMedCrossRefGoogle Scholar
  29. 29.
    Kolaskar AS, Kulkarni-Kale U (1999) Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology 261:31–42PubMedCrossRefGoogle Scholar
  30. 30.
    Kulkarni-Kale U, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope predic-tion server. Nucleic Acids Res 33: W168–W171PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–438PubMedCrossRefGoogle Scholar
  32. 32.
    Barlow DJ, Thornton JM (1983) Ion-pairs in proteins. J Mol Biol 168:867–885PubMedCrossRefGoogle Scholar
  33. 33.
    Sheriff S (1993) Some methods for examining the interactions between two molecules. Immunomethods 3:191–196CrossRefGoogle Scholar
  34. 34.
    Tsumoto K, Ogasahara K, Ueda Y, Watanabe K, Yutani K, Kumagai I (1996) Role of salt bridge formation in antigen-antibody interaction. Entropic contribution to the complex between hen egg white lysozyme and its monoclonal antibody HyHEL10. J Biol Chem 271:32612–32616PubMedCrossRefGoogle Scholar
  35. 35.
    McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793PubMedCrossRefGoogle Scholar
  36. 36.
    McConkey BJ, Sobolev V, Edelman M (2002) Quantification of protein surfaces, volumes and atom-atom contacts using a constrained Voronoi procedure. Bioinformatics 18: 1365–1373PubMedCrossRefGoogle Scholar
  37. 37.
    Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637PubMedCrossRefGoogle Scholar
  38. 38.
    Martin AC (1996) Accessing the Kabat antibody sequence database by computer. Proteins 25:130–133PubMedCrossRefGoogle Scholar
  39. 39.
    Malby RL, McCoy AJ, Kortt AA, Hudson PJ, Colman PM (1998) Three-dimensional structures of single-chain Fv-neuraminidase complexes. J Mol Biol 279:901–910PubMedCrossRefGoogle Scholar
  40. 40.
    Kuroda D, Shirai H, Jacobson MP, Nakamura H (2012) Computer-aided antibody design. Protein Eng Des Sel 25:507–521PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res 37:W474–W479. doi: 10.1093/nar/gkp387 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Urmila Kulkarni-Kale
    • 1
    Email author
  • Snehal Raskar-Renuse
    • 1
    • 2
  • Girija Natekar-Kalantre
    • 1
    • 3
  • Smita A. Saxena
    • 1
  1. 1.Bioinformatics CentreUniversity of PunePuneIndia
  2. 2.Agilent TechnologiesBangaloreIndia
  3. 3.Department of Chemical EngineeringIndian Institute of TechnologyMumbaiIndia

Personalised recommendations