Immunoinformatics: A Brief Review

Part of the Methods in Molecular Biology book series (MIMB, volume 1184)


A large volume of data relevant to immunology research has accumulated due to sequencing of genomes of the human and other model organisms. At the same time, huge amounts of clinical and epidemiologic data are being deposited in various scientific literature and clinical records. This accumulation of the information is like a goldmine for researchers looking for mechanisms of immune function and disease pathogenesis. Thus the need to handle this rapidly growing immunological resource has given rise to the field known as immunoinformatics. Immunoinformatics, otherwise known as computational immunology, is the interface between computer science and experimental immunology. It represents the use of computational methods and resources for the understanding of immunological information. It not only helps in dealing with huge amount of data but also plays a great role in defining new hypotheses related to immune responses. This chapter reviews classical immunology, different databases, and prediction tool. Further, it briefly describes applications of immunoinformatics in reverse vaccinology, immune system modeling, and cancer diagnosis and therapy. It also explores the idea of integrating immunoinformatics with systems biology for the development of personalized medicine. All these efforts save time and cost to a great extent.

Key words

Systems biology Immunomics In silico models T cells B cells Allergy Reverse vaccinology Personalized medicine 



Ms. Namrata Tomar, one of the authors, gratefully acknowledges CSIR, India, for providing her a Senior Research Fellowship (9/93(0145)/12, EMR-I).


  1. 1.
    Thomas K, Goldsby J, Osborne RA, Barbara A, Kuby J (2006) Kuby immunology, 6th edn. Freeman and Co., WHGoogle Scholar
  2. 2.
    Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2:256–267PubMedGoogle Scholar
  3. 3.
    Korber B, LaBute M, Yusim K (2006) Immunoinformatics: comes of Age. PLoS Comput Biol 2:0484–0492Google Scholar
  4. 4.
    Gardy JL, Lynn DJ, Brinkman FSL, Rew H (2009) Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 30:249–262PubMedGoogle Scholar
  5. 5.
    Davies MN, Flower DR (2007) Harnessing bioinformatics to discover new vaccine. Drug Discov Today 12:389–395PubMedGoogle Scholar
  6. 6.
    Ortutay C, Vihinen M (2009) Immunome Knowledge base (IKB): An integrated service for immunome research. BMC Immunol 10Google Scholar
  7. 7.
    Sette A, Fleri W, Peters B, Sathiamurthy M, Bui HH (2005) A roadmap for the immunomics of category A-C pathogens. Immunity 22: 155–161PubMedGoogle Scholar
  8. 8.
    De Groot AS (2006) Immunomics: discovering new targets for vaccine and therapeutics. Drug Discov Today 11:203–209PubMedGoogle Scholar
  9. 9.
    Grainger DJ (2004) Immunomics: principles and practice. IRTL 2:1–6Google Scholar
  10. 10.
    No K, Everse J, Je D, Fe S, Cy L, Clt L, Ss T, Mosbach K (1974) Purification and separation of pyridine nucleotide-linked dehydrogenases by affinity chromatography techniques. Proc Natl Acad Sci U S A 71:3450–3454Google Scholar
  11. 11.
    Davey HM (2004) Flow cytometric techniques for the detection of microorganisms. Methods Cell Sci 24:91–97Google Scholar
  12. 12.
    Durkin MM, Connolly PA, Wheat LJ (1997) Comparison of radioimmunoassay and enzyme-linked immunoassay methods for detection of histoplasma capsulatum var. capsulatum antigen. J Clin Microbiol 35:2252–2255PubMedCentralPubMedGoogle Scholar
  13. 13.
    Ma H, Shieh KJ, Lee SL (2006) Study of ELISA technique. Nature 4:36–37Google Scholar
  14. 14.
    Levine MA, Thornton P, Forman SJ, Hale PV, Holdorf D, Rouault CL, Powars D, Feinstein DI, Lukes RJ (1980) Positive Coombs test in Hodgkin’s disease: significance and implications. Blood 55:607–611PubMedGoogle Scholar
  15. 15.
    Nishimaki T, Sagawa K, Motogi S, Saito K, Morito T, Yoshida H, Kasukawa R (1987) A competitive inhibition test of enzyme immunoassay for the anti-nRNP antibody. J Immunol Methods 100:157–160PubMedGoogle Scholar
  16. 16.
    Wanga B, Huaa RH, Tiana Z-J, Chena N-S, Zhaoa F-R, Liua T-Q, Wanga Y-F, Tong G-Z (2009) Identification of a virus-specific and conserved B-cell epitope on NS1 protein of Japanese encephalitis virus. Virus Res 141: 90–95Google Scholar
  17. 17.
    Admon A, Barnea E, Ziv T (2003) Tumor antigens and proteomics from the point of view of the major histocompatibility complex peptides. Mol Cell Proteomics 2:388–398PubMedGoogle Scholar
  18. 18.
    Boon T, Coulie PG, Eynde den BV (1997) Tumor antigens recognized by T cells. Immunol Today 18:267–268PubMedGoogle Scholar
  19. 19.
    De Groot AS, Sbai H, Aubin CS, Mcmurry J, Martin W (2002) Immuno-informatics: mining genomes for vaccine components. Immunol Cell Biol 80:225–269Google Scholar
  20. 20.
    Quintana FJ, Hagedorn PH, Gad E, Yifat M, Eutan D, Cohen IR (2004) Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc Natl Acad Sci 101:14615–14621PubMedCentralPubMedGoogle Scholar
  21. 21.
    Sampson HA (2005) Food allergy-accurately identifying clinical reactivity. Allergy 60:19–24PubMedGoogle Scholar
  22. 22.
    de Vegvar HEN, Robinson WH (2004) Microarray profiling of antiviral antibodies for the development of diagnostics, vaccines, and therapeutics. J Clin Immunol 111: 196–201Google Scholar
  23. 23.
    Neuman de Vegvar HE, Amara RR, Steinman L, Utz PJ, Robinson HL, Robinson WH (2003) Microarray profiling of antibody responses against simian-human immunodeficiency virus: post challenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. J Virol 77: 11125–11138PubMedCentralPubMedGoogle Scholar
  24. 24.
    Wang Y (2004) Immunostaining with dissociable antibody microarrays. Proteomics 4:20–26PubMedGoogle Scholar
  25. 25.
    Magdalena J, Odling J, Qiang PH, Martenn S, Joakin L, Uhlen M, Hammarstrom L, Nilsson P (2005) Serum microarrays for large scale screening of protein levels. Mol Cell Proteomics 4:1942–1947Google Scholar
  26. 26.
    Sahin U, Tureci O, Pfreundschuh M (1997) Serological identification of human tumor antigens. Curr Opin Immunol 9:709–716PubMedGoogle Scholar
  27. 27.
    Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig coated artificial antigen-presenting cells. Nat Med 9:619–624PubMedGoogle Scholar
  28. 28.
    Braga-Neto UM, Marques ETA (2006) From functional genomics to functional immunomics: new challenges, Old problems, Big rewards. PLoS Comput Biol 2:651–662Google Scholar
  29. 29.
    Nahtman T, Jernberg A, Mahdavifar S, Zerweck J, Schutkowski M, Maeurer M, Reilly M (2007) Validation of peptide epitope microarray experiments and extraction of quality data. J Immunol Methods 328:1–13PubMedGoogle Scholar
  30. 30.
    Peters B, Sidney J, Bourne P et al (2005) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 3: 1361–1370Google Scholar
  31. 31.
    Lynn DJ, Winsor GL, Chan C et al (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4:1–11Google Scholar
  32. 32.
    Barsky S, Gardy JL, Hancock R, Munzer T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042PubMedGoogle Scholar
  33. 33.
    Shanon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504Google Scholar
  34. 34.
    Evans MC (2008) Recent advances in immunoinformatics: application of in silico tools to drug development. Curr Opin Drug Discov Devel 11:233–241PubMedGoogle Scholar
  35. 35.
    Saha S, Bhasin M, Raghava GPS (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6Google Scholar
  36. 36.
    Huang J, Honda W (2006) CED: a conformational epitope. BMC Immunol 7:7PubMedCentralPubMedGoogle Scholar
  37. 37.
    Schlessinger A, Ofran Y, Yachdav G, Rost B (2006) Epitome: database of structure-inferred antigenic epitopes. Nucleic Acids Res 34: D777–D780PubMedCentralPubMedGoogle Scholar
  38. 38.
    Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219PubMedGoogle Scholar
  39. 39.
    Sathiamurthy M, Peters B, Bui HH et al (2005) An ontology for immune epitopes: application to the design of a broad scope database of immune reactivities. Immunome Res 1Google Scholar
  40. 40.
    Feldhahn M, Donnes P, Thiel P, Kohlbacher O (2009) FRED-a framework for T-cell epitope detection. Bioinformatics 25:2758–2759PubMedCentralPubMedGoogle Scholar
  41. 41.
    Lefranc M-P, Giudicelli V, Ginestoux C et al (2009) IMGT®, the international ImMuno GeneTics information system®. Nucleic Acids Res 37:D1006–D1012PubMedCentralPubMedGoogle Scholar
  42. 42.
    Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SGE (2011) The IMGT/HLA database. Nucleic Acids Res 39(Suppl 1):D1171–D1176PubMedCentralPubMedGoogle Scholar
  43. 43.
    Pomes A (2010) Relevant B cell epitopes in allergic disease. Int Arch Allergy Immunol 152:1–11PubMedCentralPubMedGoogle Scholar
  44. 44.
    Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TAE, Thomas W (1994) Allergen nomenclature. Bull World Health Organ 72:796–806Google Scholar
  45. 45.
    Kim C, Kwon S, Lee G, Lee H, Choi J, Kim Y, Hahn J (2009) A database for allergenic proteins and tools for allergenicity prediction. Bioinformation 3:344–345PubMedCentralPubMedGoogle Scholar
  46. 46.
    Mari A, Scalab E, Palazzob P, Ridolfib S, Zennarob D, Carabella G (2006) Bioinformatics applied to allergy: Allergen databases, from collecting sequence information to data integration. The Allergome platform as a model. Cell Immunol 244:97–100PubMedGoogle Scholar
  47. 47.
    Ivanciuc O, Schein CH, Braun W (2003) SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res 31: 359–362PubMedCentralPubMedGoogle Scholar
  48. 48.
    Greenbaum JA, Andersen PH, Blythe M et al (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20: 75–82PubMedGoogle Scholar
  49. 49.
    Tong JC, Ren EC (2009) Immunoinformatics: current trends and future directions. Drug Discov Today 14:684–689PubMedGoogle Scholar
  50. 50.
    Bui HH, Peters B, Assarsson E, Mbawuike I, Sette A (2007) Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci U S A 104:246–251PubMedCentralPubMedGoogle Scholar
  51. 51.
    Muller GM, Shapira M, Arnon R (1982) Anti-influenza response achieved by immunization with a synthetic conjugate. Proc Natl Acad Sci U S A 79:569–573PubMedCentralPubMedGoogle Scholar
  52. 52.
    Naruse H, Ogasawara K, Kaneda R, Hatakeyama S, Itoh T, Kida H, Miyazaki T, Good RA, Onoe K (1994) A potential peptide vaccine against two different strains of influenza virus isolated at intervals of about 10 years. Proc Natl Acad Sci U S A 91:9588–9592PubMedCentralPubMedGoogle Scholar
  53. 53.
    Pellequer J, Westhof E, Regenmortel MV (1991) Predicting the location of structure of continuous epitopes in proteins from their primary structure. Methods Enzymol 203: 176–201PubMedGoogle Scholar
  54. 54.
    Parker J, Guo D, Hodges R (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432PubMedGoogle Scholar
  55. 55.
    Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148PubMedGoogle Scholar
  56. 56.
    Levitt M (1978) Conformational preferences of amino acids in globular proteins. Biochemistry 17:4277–4285PubMedGoogle Scholar
  57. 57.
    Emini E, Hughes J, Perlow D, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus specific synthetic peptide. J Virol 55:836–839PubMedCentralPubMedGoogle Scholar
  58. 58.
    EL-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting protective linear b-cell epitopes using evolutionary information. In: IEEE International Conference on Bioinformatics and Biomedicine 289–292Google Scholar
  59. 59.
    Odorico M, Pellequer JL (2003) BEPITOPE: predicting the location of continuous epitopes and patterns in protein. J Mol Recognit 16: 20–22PubMedGoogle Scholar
  60. 60.
    Pellequer JL, Westhof E (1993) PREDITOP: a program for antigenicity predictions. J Mol Graph 11:204–210PubMedGoogle Scholar
  61. 61.
    Saha S, Raghava GPS (2004) BcePred: Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-chemical Properties. In: Nicosia G, Cutello V, Bentley PJ, Timis J (eds.) ICARIS Springer, LNCS 3239:197–204Google Scholar
  62. 62.
    Ghate AD, Bhagwat BU, Bhosle SG, Gadepalli SM, Kulkarni-Kale UD (2007) Characterization of antibody-binding sites on proteins: development of a knowledgebase and its applications in improving epitope prediction. Protein Pept Lett 14:531–535PubMedGoogle Scholar
  63. 63.
    Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48PubMedGoogle Scholar
  64. 64.
    Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22:113–120PubMedCentralPubMedGoogle Scholar
  65. 65.
    Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B cell epitopes. Immunome Res 2Google Scholar
  66. 66.
    Toseland CP, Clayton DJ, McSparron H et al (2005) AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 1Google Scholar
  67. 67.
    Anderson P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B cell epitopes using protein 3D structures. Protein Sci 15:2558–2567Google Scholar
  68. 68.
    Sweredoski M, Baldi P (2008) PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24: 1459–1460PubMedGoogle Scholar
  69. 69.
    Hamelryck T (2005) An amino acid has two sides: a new 2D measure provides a different view of solvent exposure. Proteins 59: 38–48PubMedGoogle Scholar
  70. 70.
    Bublil EM, Mayrose NTFI, Penn O, Berman AR (2007) Stepwise prediction of conformational discontinuous B-cell epitopes using the mapitope algorithm. Proteins 68:294–304PubMedGoogle Scholar
  71. 71.
    Sollner J, Grohmann R, Rapberger R, Perco P, Lukas A, Mayer B (2008) Analysis and prediction of protective continuous B cell epitopes on pathogen proteins. Immunome Res 4Google Scholar
  72. 72.
    Kale KU, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope prediction server. Nucleic Acids Res 33:W168–W171Google Scholar
  73. 73.
    Zhang W, Xiong Y, Zhao M, Zou H, Ye X, Liu J (2011) Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinformatics 12:341PubMedCentralPubMedGoogle Scholar
  74. 74.
    Mayrose I, Penn O, Erez E et al (2007) Pepitope: Epitope mapping from affinity-selected peptides. Bioinformatics 23:3244–3246PubMedGoogle Scholar
  75. 75.
    Pizzi E, Cortese R, Tramontano A (1995) Mapping epitopes on protein surfaces. Biopolymers 36:675–680PubMedGoogle Scholar
  76. 76.
    Moreau V, Granier C, Villard S, Laune D, Molina F (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 22:1088–1095PubMedGoogle Scholar
  77. 77.
    Huang J, Gutteridge A, Honda W, Kanehisa M (2006) MIMOX: a web tool for phage display based epitope mapping. BMC Bioinformatics 7Google Scholar
  78. 78.
    Mayrose I, Shlomi T, Rubinstein ND, Gershoni JM, Ruppin E, Sharan R, Pupko T (2007) Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 35:69–78PubMedCentralPubMedGoogle Scholar
  79. 79.
    Huang YX, Bao YL, Guo SY, Wang Y, Zhou CG, Li YX (2008) Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis. BMC Bioinformatics 9:538PubMedCentralPubMedGoogle Scholar
  80. 80.
    Schreiber A, Humbert M, Benz A, Dietrich U (2005) 3D-Epitope-Explorer (3DEX): Localization of conformational epitopes within three-dimensional structures of proteins. J Comput Chem 26:879–887PubMedGoogle Scholar
  81. 81.
    Caragea C, Sinapov J, Silvescu A, Dobbs D, Honavar V (2007) Glycosylation site prediction using ensembles of support vector machine classifiers. BMC Bioinformatics 8:438PubMedCentralPubMedGoogle Scholar
  82. 82.
    EL-Manzalawy Y, Honavar V (2010) Recent advances in B-cell epitope prediction methods. Immunome Res 6(Suppl 2):2Google Scholar
  83. 83.
    Sollner J (2006) Selection and combination of machine learning classifiers for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19:209–214PubMedGoogle Scholar
  84. 84.
    Huang L, Dai Y (2006) Direct prediction of T-cell epitopes using support vector machines with novel sequence encoding schemes. J Bioinform Comput Biol 4:93–107PubMedGoogle Scholar
  85. 85.
    Bhasin M, Raghava GPS (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridomics 22:229–234PubMedGoogle Scholar
  86. 86.
    Zhang GL, Petrovsky N, Kwoh CK, August JT, Brusic V (2006) PredTAP: a system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res 2Google Scholar
  87. 87.
    Buus S, Lauemoller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S (2003) Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 62: 378–384PubMedGoogle Scholar
  88. 88.
    Neilsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using networks with novel sequence representations. Protein Sci 12: 1007–1017Google Scholar
  89. 89.
    Buus S, Stryhn A, Winther K, Kirkby N, Pedersen LO (1995) Receptor–ligand interactions measured by an improved spun column chromatography technique. A high efficiency and high throughput size separation method. Biochim Biophys Acta 1243:453–460PubMedGoogle Scholar
  90. 90.
    Larsen MV, Lundegaard C, Lamberth K, Buss S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8Google Scholar
  91. 91.
    Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509–W512PubMedCentralPubMedGoogle Scholar
  92. 92.
    Brusic V, Rudy G, Honeyman M, Hammer J, Harrison L (1998) Prediction of MHC class II-binding peptides using an evolutionary and artificial neural network. Bioinformatics 14: 121–130PubMedGoogle Scholar
  93. 93.
    Miyata J (1991) A User’s Guide to PlaNet Version 5.6.Google Scholar
  94. 94.
    Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7:131PubMedCentralPubMedGoogle Scholar
  95. 95.
    Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26:29–41Google Scholar
  96. 96.
    Bhasin M, Raghava GPS (2004) Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci 13: 596–607PubMedCentralPubMedGoogle Scholar
  97. 97.
    Nanni L (2006) Machine learning algorithms for T-cell epitopes prediction. Neurocomputing 69:866–868Google Scholar
  98. 98.
    Bhasin M, Raghava GPS (2005) Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res 33:W202–W207PubMedCentralPubMedGoogle Scholar
  99. 99.
    Joachims T (1999) Marking large-scale support vector machine learning practical. In: Advances in Kernel methods: support vector learning. MIT Press, Cambridge, MA, pp 169–184Google Scholar
  100. 100.
    Cost S, Salzberg S (1993) A weighted nearest neighbor algorithm for learning with symbolic features. Mach Learn 10:57–78Google Scholar
  101. 101.
    Witten IH, Frank E (1999) Data mining: practical machine learning tools and techniques with java implementations, 2nd edn. Morgan Kaufman, San FranciscoGoogle Scholar
  102. 102.
    Flower DR (2003) Towards in silico prediction of immunogenic epitopes. Trends Immunol 24:667–674PubMedGoogle Scholar
  103. 103.
    Bian H, Hammer H (2004) Discovery of promiscuous HLA restricted T cell epitope with TEPITOPE. Methods 34:468–475PubMedGoogle Scholar
  104. 104.
    Zhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S (2012) TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One 7:e30483PubMedCentralPubMedGoogle Scholar
  105. 105.
    Kangueane P, Sakharkar MK (2005) T epitope designer: HLA peptide binding prediction server. Bioinformation 1:21–24PubMedCentralPubMedGoogle Scholar
  106. 106.
    Zhao B, Mathura VS, Ganapathy R, Moochhala S, Sakharkar MK, Kangneane P (2003) A novel MHCp binding prediction model. Hum Immunol 64:1123–1143PubMedGoogle Scholar
  107. 107.
    Ponomarenko JV, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9Google Scholar
  108. 108.
    Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred: a server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 31:3621–3624PubMedCentralPubMedGoogle Scholar
  109. 109.
    Schiewe AJ, Haworth IS (2007) Structure based prediction of MHC-peptide association: algorithm comparison and approach to cancer vaccine design. J Mol Graph Model 26:667–675PubMedGoogle Scholar
  110. 110.
    Jojic N, Gomez MR, Heckerman D, Kadle C, Furman OS (2006) Learning MHC-I peptide binding. Bioinformatics 22:e227–e235PubMedGoogle Scholar
  111. 111.
    Furman OS, Altuvia Y, Sette A, Margalit H (2000) Structure-based prediction of binding peptides to MHC class I molecules: Application to a broad range of MHC alleles. Protein Sci 9:1838–1846Google Scholar
  112. 112.
    Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256:623–644PubMedGoogle Scholar
  113. 113.
    Altuvia Y, Margalit H (2004) A structure-based approach for prediction of MHC-binding peptides. Methods 34:454–459PubMedGoogle Scholar
  114. 114.
    Singh H, Raghava GPS (2001) Propred: prediction of HLA-DR binding sites. Trends Immunol 17:1236–1237Google Scholar
  115. 115.
    Sturniolo T, Bono E, Ding J et al (1999) Generation of tissue-specific and promiscuous HLA ligand database using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561PubMedGoogle Scholar
  116. 116.
    Feldhahn M, Thiel P, Schuler MM, Hillen N, Stevanovic S, Rammensee HG, Ohlbacher O (2008) EpiToolKit-a web server for computational immunomics. Nucleic Acids Res 1:W519–W522Google Scholar
  117. 117.
    Flower DR, Phadwal K, Macdonald IK, Coveney PV, Davies MN, Wan S (2010) T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges. Immunome Res 6(Suppl 2):S4PubMedCentralPubMedGoogle Scholar
  118. 118.
    Zhang C, Anderson A (1998) DeLisi C: structural principles that govern the peptide-binding motifs of class I MHC molecules. J Mol Biol 281:929–947PubMedGoogle Scholar
  119. 119.
    Wan S, Coveney PV, Flower DR (2005) Molecular basis of peptide recognition by the TCR: affinity differences calculated using large scale computing. J Immunol 175: 1715–1723PubMedGoogle Scholar
  120. 120.
    Stadler MB, Stadler BM (2003) Allergenicity prediction by protein sequence. FASEB J 17: 1141–1143PubMedGoogle Scholar
  121. 121.
    Kong W, Tan TS, Tham L, Choo KW (2006) Improved prediction of allergenicity by combination of multiple sequence motifs. In Silico Biol 7:77–86Google Scholar
  122. 122.
    Bjorklund AK, Atmadja SD, Zorzet A, Hammerling U, Gustafsson MG (2005) Supervised identification of allergen-representative peptides for in silico detection of potentially allergenic proteins. Bioinformatics 21:39–50PubMedGoogle Scholar
  123. 123.
    Zorzet A, Gustafsson M, Hammerling U (2002) Prediction of food protein allergenicity: a bioinformatic learning systems approach. In Silico Biol 2:525–534PubMedGoogle Scholar
  124. 124.
    Saha S, Raghava GPS (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34: W202–W209PubMedCentralPubMedGoogle Scholar
  125. 125.
    Fiers MWEJ, Kleter GA, Nijland H, Peijnenburg AACM, Peter NJ, Ham RCHJV (2004) AllermatchTM, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines. BMC Bioinformatics 5Google Scholar
  126. 126.
    FAO/WHO: Allergenicity of Genetically Modified Foods. publications/biotech/en/ec_jan 2001.pdf, 2001.
  127. 127.
    FAO/WHO: Codex Principles and Guidelines on Foods Derived from Biotechnology, 2003.
  128. 128.
    Cui J, Han LY, Li H, Ung CY, Tang ZQ, Zheng CJ, Cao ZW, Chen YZ (2007) Computer prediction of allergen proteins from sequence-derived protein structural and physicochemical properties. Mol Immunol 44:514–520PubMedGoogle Scholar
  129. 129.
    Barrio AM, Atmadja DS, Nistr A, Gustafsson MG, Hammerling U, Rudloff EB (2007) EVALLER: a web server for in silico assessment of potential protein allergenicity. Nucleic Acids Res 35:694–700Google Scholar
  130. 130.
    Soeria-Atmadja D, Lundell T, Gustafsson MG, Hammerling U (2006) Computational detection of allergenic proteins attains a new level of accuracy with in silico variable-length peptide extraction and machine learning. Nucleic Acids Res 34:3779–3793PubMedCentralPubMedGoogle Scholar
  131. 131.
    Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820PubMedGoogle Scholar
  132. 132.
    De Groot AS, Rappuoli R (2003) Genome derived vaccines. Expert Rev Vaccines 3: 59–76Google Scholar
  133. 133.
    Gallimore A, Hengartner H, Zinkernagel R (1998) Hierarchies of antigen-specific cytotoxic T cell responses. Immunol Rev 164: 29–36PubMedGoogle Scholar
  134. 134.
    Morris S, Kelly C, Howard A, Li X, Collins F (2000) The immunogenicity of single and combination DNA vaccines against tuberculosis. Vaccine 18:2155–2163PubMedGoogle Scholar
  135. 135.
    Zhao B, Sakharkar KR, Lim CS, Kangueane P, Sakharkar MK (2007) MHC-peptide binding prediction for epitope based vaccine design. Int J Integr Biol 1:127–140Google Scholar
  136. 136.
    Davenport MP, Hill AV (1996) Reverse immunogenetics: from HLA disease associations to vaccine candidates. Mol Med Today 2:38–45PubMedGoogle Scholar
  137. 137.
    Iwai LK, Yoshida M, Sidney J et al (2003) In silico prediction of peptides binding to multiple HLA-DR molecules accurately identifies immunodominant epitopes from gp43 of Paracoccidioides brasiliensis frequently recognized in primary peripheral blood mononuclear cell responses from sensitized individuals. Mol Med 9:209–219PubMedCentralPubMedGoogle Scholar
  138. 138.
    Reche PA, Reinherz EL (2005) PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands. Nucleic Acids Res 33: W138–W142PubMedCentralPubMedGoogle Scholar
  139. 139.
    Florea L, Haldorsson B, Kohlbacher O, Schwarty R, Hoffman S, Istrail S (2003) Epitope prediction algorithm for peptide-based vaccine design. Proc IEEE Comput Soc Bioinform Conf 2:17–26PubMedGoogle Scholar
  140. 140.
    Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumor antigens and subunit vaccines. BMC Bioinformatics 8Google Scholar
  141. 141.
    Nagarajan H, Gupta R, Agarwal P, Scaria V, Pillai B (2006) DyNAVacS: an integrative tool for optimized DNA vaccine design. Nucleic Acids Res 34:W264–W266Google Scholar
  142. 142.
    Lollini PL, Motta S, Pappalardo F (2006) Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinformatics 7:352PubMedCentralPubMedGoogle Scholar
  143. 143.
    Vivona S, Bernante F, Filippini F (2006) NERVE: New enhanced reverse vaccinology environment. BMC Biotechnol 6Google Scholar
  144. 144.
    Xiang Z, Todd T, Ku KP et al (2008) VIOLIN: vaccine investigation and online information network. Nucleic Acids Res 36: 923–928Google Scholar
  145. 145.
    Xianga Z, He Y (2009) Vaxign: a web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinol 1:23–29Google Scholar
  146. 146.
    Gong T, Cai Z (2005) Visual Modeling and Simulation of Adaptive Immune System. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China 6:6116–6119Google Scholar
  147. 147.
    Kalita JK, Chandrashekar K, Hans R, Selvam P, Newell MK (2006) Computational modelling and simulation of the immune system. Int J Bioinform Res Appl 2:63–88PubMedGoogle Scholar
  148. 148.
    Castiglione F, Liso A (2005) The role of computational models of the immune system in designing vaccination strategies. Immunopharmacol Immunotoxicol 27:417–432PubMedGoogle Scholar
  149. 149.
    DeLuca DS, Blasczyk R (2007) The immunoinformatics of cancer immunotherapy. Tissue Antigens 70:265–271PubMedGoogle Scholar
  150. 150.
    Hu H, Brzeski H, Hutchins J et al (2004) Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research. Pharmacogenomics 5:933–941PubMedGoogle Scholar
  151. 151.
    Sanchez W, Gilman B, Kher M, Lagou S, Covitz P (2004) caGRID White Paper (cancer biomedical informatics grid prototype project). National Cancer Institute Center for Bioinformatics (NCICB), USAGoogle Scholar
  152. 152.
    Galperin MY (2005) The molecular biology database collection: 2005 update. Nucleic Acids Res 33:D5–D24PubMedCentralPubMedGoogle Scholar
  153. 153.
    Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T-cells: March 2004 update. Cancer Immunol Immunother 54:187–207PubMedGoogle Scholar
  154. 154.
    Wang XS, Zhao HT, Xu QW et al (2006) HPtaa database-potential target genes for clinical diagnosis and immunotherapy of human carcinoma. Nucleic Acids Res 1:D607–D612Google Scholar
  155. 155.
    Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635PubMedGoogle Scholar
  156. 156.
    Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10: 7252–7259PubMedGoogle Scholar
  157. 157.
    Rosa DS, Ribeiro SP, Cunha-Neto E (2010) CD4+ T cell epitope discovery and rational vaccine design. Arch Immunol Ther Exp 58:121–130Google Scholar
  158. 158.
    Iurescia S, Fioretti D, Fazio VM, Rinaldi M (2012) Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech's challenge. Biotechnol Adv 30:372–383PubMedGoogle Scholar
  159. 159.
    Khanolkar A, Badovinac VP, Harty JT (2007) CD8 T cell memory development: CD4 T cell help is appreciated. Immunol Res 39:94–104PubMedGoogle Scholar
  160. 160.
    Lu J, Celis E (2000) Use of two predictive algorithms of the world wide web for the identification of tumor-reactive T-cell epitopes. Cancer Res 60:5223–5227PubMedGoogle Scholar
  161. 161.
    Smith CM, Wilson NS, Waithman J et al (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5:1143–1148PubMedGoogle Scholar
  162. 162.
    Wan YY, Flavell RA (2009) How diverse–CD4 effector T cells and their functions. J Mol Cell Biol 1:20–36PubMedCentralPubMedGoogle Scholar
  163. 163.
    Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4+ T cells in the antitumor immune response. J Exp Med 188: 2357–2368PubMedCentralPubMedGoogle Scholar
  164. 164.
    Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188:2199–2204PubMedCentralPubMedGoogle Scholar
  165. 165.
    Houot R, Levy R (2009) Vaccines for lymphomas: idiotype vaccines and beyond. Blood Rev 23:137–142PubMedGoogle Scholar
  166. 166.
    King CA, Spellerberg MB, Zhu D et al (1998) DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 4:1281–1286PubMedGoogle Scholar
  167. 167.
    Thirdborough SM, Radcliffe JN, Friedmann PS, Stevenson FK (2002) Vaccination with DNA encoding a single-chain TCR fusion protein induces anticlonotypic immunity and protects against T-cell lymphoma. Cancer Res 62:1757–1760PubMedGoogle Scholar
  168. 168.
    Rice J, Elliott T, Buchan S, Stevenson FK (2001) DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J Immunol 167:1558–1565PubMedGoogle Scholar
  169. 169.
    Yan Q (2010) Immunoinformatics and systems biology methods for personalized medicine. Methods Mol Biol 662:203–220PubMedGoogle Scholar
  170. 170.
    Wang SS, Bratti MC, Rodriguez AC et al (2009) Common variants in immune and DNA repair genes and risk for human papillomavirus persistence and progression to cervical cancer. J Infect Dis 199:20–30PubMedCentralPubMedGoogle Scholar
  171. 171.
    Vivona S, Gardy JL, Ramachandran S, Brinkman FSL, Raghava GPS, Flower DR, Filippini F (2008) Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends Biotechnol 26:190–200PubMedGoogle Scholar
  172. 172.
    Daz P, Gillespie M, Krueger J, Prez J, Radebaugh A, Shearman T, Vo G, Wheatley C (2008) A mathematical model of the immune system’s response in obesity-related chronic inflammation. McNair/MAOP Summer Research Symposium, Virginia Tech, Blacksburg VA 2:26–4.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Machine Intelligence Unit, Indian Statistical InstituteKolkataIndia

Personalised recommendations