Planar Patch Clamp for Neuronal Networks—Considerations and Future Perspectives

  • Alessandro BoscaEmail author
  • Marzia Martina
  • Christophe Py
Part of the Methods in Molecular Biology book series (MIMB, volume 1183)


The patch-clamp technique is generally accepted as the gold standard for studying ion channel activity allowing investigators to either “clamp” membrane voltage and directly measure transmembrane currents through ion channels, or to passively monitor spontaneously occurring intracellular voltage oscillations. However, this resulting high information content comes at a price. The technique is labor-intensive and requires highly trained personnel and expensive equipment. This seriously limits its application as an interrogation tool for drug development. Patch-clamp chips have been developed in the last decade to overcome the tedious manipulations associated with the use of glass pipettes in conventional patch-clamp experiments. In this chapter, we describe some of the main materials and fabrication protocols that have been developed to date for the production of patch-clamp chips. We also present the concept of a patch-clamp chip array providing high resolution patch-clamp recordings from individual cells at multiple sites in a network of communicating neurons. On this chip, the neurons are aligned with the aperture-probes using chemical patterning. In the discussion we review the potential use of this technology for pharmaceutical assays, neuronal physiology and synaptic plasticity studies.

Key words

Ion channels Synapses Neuronal networks Patch-clamp chips Microfluidic networks Chemical patterning 


  1. 1.
    Sigworth FJ, Klemic KG (2005) Microchip technology in ion-channel research. IEEE Trans Nanobioscience 4:121–127PubMedCrossRefGoogle Scholar
  2. 2.
    Fertig N, Meyer C, Blick RH et al (2001) Microstructured glass chip for ion-channel electrophysiology. Phys Rev E Stat Nonlin Soft Matter Phys 64(1):040901PubMedCrossRefGoogle Scholar
  3. 3.
    Behrends JC, Fertig N (2007) Planar patch clamping. In: Walz W (ed) Patch-clamp analysis, advanced techniques. Humana Press, Totowa, NJ, pp 411–433CrossRefGoogle Scholar
  4. 4.
    Sondermann M, George M, Fertig N et al (2006) High-resolution electrophysiology on a chip: transient dynamics of alamethicin channel formation. Biochim Biophys Acta 1758(4):545–551PubMedCrossRefGoogle Scholar
  5. 5.
    Martina M, Luk C, Py C et al (2011) Recordings of cultured neurons and synaptic activity using patch-clamp chips. J Neural Eng 8(3):034002. doi: 10.1088/1741-2560/8/3/034002 PubMedCrossRefGoogle Scholar
  6. 6.
    Harms GS, Orr G, Montal M et al (2003) Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys J 85:1826–1838PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Gullo MR, Akiyama T, Frederix PLTM et al (2005) Towards a planar sample support for in situ experiments in structural biology. Microelectron Eng 78–79:571–574CrossRefGoogle Scholar
  8. 8.
    Dunlop J, Bowlby M, Peri R et al (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368PubMedCrossRefGoogle Scholar
  9. 9.
    Taketani M, Baudry M (2006) Advances in network electrophysiology: using multi-electrode arrays. Springer, New York, NYCrossRefGoogle Scholar
  10. 10.
    Jones IL, Livi P, Lewandowska MK et al (2011) The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Anal Bioanal Chem 399:2313–2329PubMedCrossRefGoogle Scholar
  11. 11.
    Berdondini L, van der Wal PD, Guenat O et al (2005) High-density electrode array for imaging in vitro electrophysiological activity. Biosens Bioelectron 21(1):167–174PubMedCrossRefGoogle Scholar
  12. 12.
    Maccione A, Garofalo M, Nieus T et al (2012) Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS micro electrode arrays. J Neurosci Methods 207(2):161–171PubMedCrossRefGoogle Scholar
  13. 13.
    Fromherz P (2006) Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue. Ann N Y Acad Sci 1093:143–160PubMedCrossRefGoogle Scholar
  14. 14.
    Patolsky F, Timko BP, Yu G et al (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–1104PubMedCrossRefGoogle Scholar
  15. 15.
    Frey U, Egert U, Heer F et al (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24:2191–2198PubMedCrossRefGoogle Scholar
  16. 16.
    Berdondini L, Imfeld K, Maccione A et al (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9:2644–2651PubMedCrossRefGoogle Scholar
  17. 17.
    Ferrea E, Maccione A, Medrihan L et al (2012) Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circ 6:80. doi: 10.3389/fncir.2012.00080 Google Scholar
  18. 18.
    Shein M, Greenbaum A, Gabay T et al (2009) Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomed Microdevices 11(2):495–501PubMedCrossRefGoogle Scholar
  19. 19.
    Huys R, Braeken D, Micholt L et al (2011) Micro-sized syringes for single-cell fluidic access integrated on a micro-electrode array CMOS chip. Conf Proc IEEE Eng Med Biol Soc 2011:7650–7653. doi: 10.1109/IEMBS.2011.6091885 PubMedGoogle Scholar
  20. 20.
    Hai A, Shappir J, Spira ME (2010) In-cell recordings by extracellular microelectrodes. Nat Methods 7:200–202PubMedCrossRefGoogle Scholar
  21. 21.
    Mealing G, Py C (2011) Patch-clamp array neurochips: value in interrogating simple neuronal networks with high resolution. Expert Rev Med Devices 8(1):3–5PubMedCrossRefGoogle Scholar
  22. 22.
    Mealing G, Bani-Yaghoub M, Tremblay R et al (2005) Application of polymer microstructures with controlled surface chemistries as a platform for creating and interfacing with synthetic neural networks. In: Proceedings of the IEEE international joint conference on neuronal networks, vol 5. IEEE, New York, NY, pp 3115–3116. doi: 10.1109/IJCNN.2005.1556425 Google Scholar
  23. 23.
    Branch DW, Corey JM, Weyhenmeyer JA et al (1998) Microstamp patterns of biomolecules for high-resolution neuronal networks. Med Biol Eng Comput 36(1):135–141PubMedCrossRefGoogle Scholar
  24. 24.
    Offenhausser A, Bocker-Meffert S, Decker T et al (2007) Microcontact printing of proteins for neuronal cell guidance. Soft Matter 3:290–298CrossRefGoogle Scholar
  25. 25.
    Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19(2):243–253PubMedCrossRefGoogle Scholar
  26. 26.
    Fertig N, Tile A, Blick RH et al (1999) Stable integration of isolated cell membrane patches in a nanomachine aperture: a step towards a novel device for membrane physiology. Appl Phys Lett 77(8):1218–1220CrossRefGoogle Scholar
  27. 27.
    Schmidt C (2000) A chip-based biosensor for the functional analysis of single ion channels. Angew Chem Int Ed Engl 39(17):3137–3140PubMedCrossRefGoogle Scholar
  28. 28.
    Gad-el-Hak M (2001) The MEMS handbook. CRC Press, Boca RatonCrossRefGoogle Scholar
  29. 29.
    Kaul RA, Syed NI, Fromherz P (2004) Neuron-semiconductor chip with chemical synapse between identified neurons. Phys Rev Lett 92(3):038102PubMedCrossRefGoogle Scholar
  30. 30.
    Lehnert T, Gijs MAM, Netzer R et al (2002) Realization of hollow SiO2 micronozzles for electrical measurements on living cells. Appl Phys Lett 81:5063–5065CrossRefGoogle Scholar
  31. 31.
    Stett A, Burkhardt C, Weber U et al (2003) CYTOCENTERING: a novel technique enabling automated cell-by-cell patch clamping with the CYTOPATCH chip. Receptors Channels 9(1):59–66PubMedCrossRefGoogle Scholar
  32. 32.
    Pantoja R, Nagarah JM, Starace DM et al (2004) Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics. Biosens Bioelectron 20(3):509–517PubMedCrossRefGoogle Scholar
  33. 33.
    Matthews B, Judy JW (2006) Design and fabrication of a micromachined planar patch-clamp substrate with integrated microfluidics for single-cell measurements. J Microelectromech Syst 15:214–222CrossRefGoogle Scholar
  34. 34.
    Curtis JC, Baldwin K, Dworak BJ et al (2008) Seal formation in silicon planar patch-clamp microstructures. J Microelectromech Syst 17: 974–983CrossRefGoogle Scholar
  35. 35.
    Py C, Denhoff MW, Martina M et al (2010) A novel silicon patch-clamp chip permits high-fidelity recording of ion channel activity from functionally defined neurons. Biotechnol Bioeng 107(4):593–600PubMedCrossRefGoogle Scholar
  36. 36.
    Sordel T, Kermarrec F, Sinquin Y et al (2010) The development of high quality seals for silicon patch-clamp chips. Biomaterials 31:7398–7410PubMedCrossRefGoogle Scholar
  37. 37.
    Fertig N, Behrends JC, George M et al (2003) Microstructured apertures in planar glass substrates for ion channel research. Receptors Channels 9:29–40PubMedCrossRefGoogle Scholar
  38. 38.
    Stett A, Bucher V, Burkhardt C et al (2003) Patch-clamping of primary cardiac cells with micro-openings in polyimide films. Med Biol Eng Comput 41:233–240PubMedCrossRefGoogle Scholar
  39. 39.
    Klemic KG, Klemic JF, Reed MA et al (2002) Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. Biosens Bioelectron 17(6–7):597–604PubMedCrossRefGoogle Scholar
  40. 40.
    Chen C-Y, Tu T-Y, Chen C-H et al (2009) Patch clamping on plane glass-fabrication of hourglass aperture and high-yield ion channel recording. Lab Chip 9:2370–2380PubMedCrossRefGoogle Scholar
  41. 41.
    Nagarah JM, Paek E, Luo Y et al (2010) Batch fabrication of high-performance planar patch-clamp devices in quartz. Adv Mater 22:4622–4627PubMedCrossRefGoogle Scholar
  42. 42.
    Metz S, Holzer R, Renaud P (2001) Polyimide-based microfluidic devices. Lab Chip 1:29–34PubMedCrossRefGoogle Scholar
  43. 43.
    Metz S, Bertsch A, Bertrand D et al (2004) Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens Bioelectron 19:1309–1318PubMedCrossRefGoogle Scholar
  44. 44.
    Kristensen BW, Noraberg J, Thiébaud P et al (2001) Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures. Brain Res 896:1–17PubMedCrossRefGoogle Scholar
  45. 45.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575CrossRefGoogle Scholar
  46. 46.
    Weibel DB, Diluzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5:209–218PubMedCrossRefGoogle Scholar
  47. 47.
    Martinez D, Py C, Denhoff MW et al (2010) High-fidelity patch-clamp recordings from neurons cultured on a polymer microchip. Biom Microdev 12:977–985CrossRefGoogle Scholar
  48. 48.
    Klemic KG, Klemic JF, Sigworth FJ (2005) An air-molding technique for fabricating PDMS planar patch-clamp electrodes. Pflugers Arch 449:564–572PubMedCrossRefGoogle Scholar
  49. 49.
    Alberti M, Snakenborg D, Lopacinska J et al (2010) Characterization of a patch-clamp microchannel array towards neuronal networks analysis. Microfluid Nanofluid 9:963–972CrossRefGoogle Scholar
  50. 50.
    Py C, Martina M, Monette R, Comas T, Denhoff MW, Luk C et al. (2012) Culturing and electrophysiology of cells on NRCC patch-clamp chips. J Vis Exp. (60), e3288, doi:  10.3791/3288
  51. 51.
    Bosca A, Magrassi R, Firpo G et al. (2009) Air molding for planar patch clamp on adherent neuronal networks. IEEE-NANO 2009. 9th IEEE conference on nanotechnology, July 26–30, 2009 Genoa, ItalyGoogle Scholar
  52. 52.
    Lau AY, Hung PJ, Wu AR et al (2006) Open-access microfluidic patch-clamp array with raised lateral cell trapping sites. Lab Chip 6:1510–1515PubMedCrossRefGoogle Scholar
  53. 53.
    Tang KC, Reboud J, Kwok YL et al (2010) Lateral patch-clamping in a standard 1536-well microplate format. Lab Chip 10:1044–1050PubMedCrossRefGoogle Scholar
  54. 54.
    Seo J, Ionescu-Zanetti C, Diamond J et al (2004) Integrated multiple patch-clamp array chip via lateral cell trapping junctions. Appl Phys Lett 84:1973–1975CrossRefGoogle Scholar
  55. 55.
    Faid K, Voicu R, Bani-Yaghoub M et al (2005) Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures. Biomed Microdevices 7:179–184PubMedCrossRefGoogle Scholar
  56. 56.
    Merz M, Fromherz P (2005) Silicon chip interfaced with a geometrically defined net of snail neurons. Adv Funct Mater 15:739–744CrossRefGoogle Scholar
  57. 57.
    Sorkin R, Greenbaum A, David-Pur M et al (2009) Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology 20(1):015101. doi: 10.1088/0957-4484/20/1/015101 PubMedCrossRefGoogle Scholar
  58. 58.
    Maher MP, Pine J, Wright J et al (1999) The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. J Neurosci Meth 87:45–56CrossRefGoogle Scholar
  59. 59.
    Wheeler BC, Brewer GJ (2010) Designing neural networks in culture: experiments are described for controlled growth, of nerve cells taken from rats, in predesigned geometrical patterns on laboratory culture dishes. Proc IEEE 98:398–406CrossRefGoogle Scholar
  60. 60.
    Petrelli A, Marconi E, Salerno M et al (2013) Nano-volume drop patterning for rapid on-chip neuronal connect-ability assays. Lab Chip 13(22):4419–4429PubMedCrossRefGoogle Scholar
  61. 61.
    Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502PubMedCrossRefGoogle Scholar
  62. 62.
    Marconi E, Nieus T, Maccione A et al (2012) Emergent functional properties of neuronal networks with controlled topology. PLoS One 7(4):e34648. doi: 10.1371/journal.pone.0034648 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Charrier A, Martinez D, Monette R et al (2010) Cell placement and guidance on substrates for neurochip interfaces. Biotechnol Bioeng 105(2):368–373PubMedCrossRefGoogle Scholar
  64. 64.
    Voicu R, Faid K, Farah AA et al (2007) Nanotemplating for two-dimensional molecular imprinting. Langmuir 23(10):5452–5458PubMedCrossRefGoogle Scholar
  65. 65.
    Chang JC, Brewer GJ, Wheeler BC (2003) A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Biomaterials 24:2863–2870PubMedCrossRefGoogle Scholar
  66. 66.
    Py C, Martina M, Diaz-Quijada GA et al (2011) From understanding cellular function to novel drug discovery: the role of planar patch-clamp array chip technology. Front Pharmacol 2:51. doi: 10.3389/fphar.2011.00051 PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Ionescu-Zanetti C, Shaw RM, Seo J et al (2005) Mammalian electrophysiology on a microfluidic platform. Proc Natl Acad Sci U S A 102:9112–9117PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alessandro Bosca
    • 1
    Email author
  • Marzia Martina
    • 2
  • Christophe Py
    • 3
  1. 1.Italian Institute of TechnologyGenoaItaly
  2. 2.Department of Translational BiosciencesNational Research Council of CanadaOttawaCanada
  3. 3.Electronics Team, Information and Communication TechnologiesNational Research Council CanadaOttawaCanada

Personalised recommendations