Skip to main content

Principles of Single-Channel Kinetic Analysis

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

Single-channel recording provides high resolution information on gating mechanisms of ion channels that are generally difficult to obtain from macroscopic measurements. Analysis of the data, however, has proven to be challenging. Early approaches rely on half-amplitude threshold detection to idealize the record into dwell-times, followed by fitting duration histograms to resolve kinetics. More recent analyses exploit explicit modeling of the data to improve the idealization accuracy. The dwell-time fitting has also evolved into direct fitting of dwell-time sequences using the maximum likelihood approach while taking account of effects of missed events. Finally, hidden Markov modeling provides an ultimate approach by which both single channel amplitudes and kinetics are analyzed simultaneously without the need of idealization. The progress in theory, along with the advance in computing power as well as the development of user-friendly software, has transformed single-channel analysis, once a specialty task, now readily accessible to a broader community of scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colquhoun D, Hawkes AG (1977) Relaxation and fluctions of membrane currents that flow through drug-operated channels. Phil Trans R Soc Lond B 199:231–262

    CAS  Google Scholar 

  2. McManus OB, Weiss DS, Spivak CE, Blatz AL, Magleby KL (1988) Fractal models are inadequate for the kinetics of four different ion channels. Biophys J 54:859–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. McManus OB, Spivak CE, Blatz AL, Weiss DS, Magleby KL (1989) Fractal models, Markov models, and channel kinetics. Biophys J 55:383–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Korn SJ, Horn R (1988) Statistical discrimination of fractal and Markov models of single channel gating. Biophys J 54:871–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sansom MSP, Ball FG, Kerry CJ, McGee R, Ramsey RL, Usherwood PNR (1989) Markov, fractal, diffusion, and related models of ion channel gating. Biophys J 56:1229–1243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kienker P (1989) Equivalence of aggregated Markov models of ion-channel gating. Proc R Soc Lond B 236:269–309

    Article  CAS  PubMed  Google Scholar 

  7. Colquhoun D, Hawkes AG (1981) On the stochastic properties of single ion channels. Proc R Soc Lond B Biol Sci 211:205–235

    Article  CAS  PubMed  Google Scholar 

  8. Fredkin DR, Montal M, Rice JA (1985) Identification of aggregated Markovian models: application to the nicotinic acetylcholine receptor. Proceedings of the Berkeley Conference in Honor of Jerzy Neymann and Jack Kiefer, Belmont, CA: Wadsworth, pp 269–289

    Google Scholar 

  9. Labarca P, Rice JA, Fredkin DR, Montal M (1985) Kinetic analysis of channel gating: application to the cholinergic receptor channel and the chloride channel from Torpedo California. Proceedings of the Berkeley Conference in Honor of Jerzy Neymann and Jack Kiefer, Belmont, CA: Wadsworth, pp. 469–478

    Google Scholar 

  10. Qin F, Li L (2004) Model-based fitting of single-channel dwell-time distributions. Biophys J 86:1657–1671

    Article  Google Scholar 

  11. Magleby KL, Pallotta BS (1983) Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. J Physiol 344:585–604

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Magleby KL, Weiss DS (1990) Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times. Proc R Soc Lond B Biol Sci 241:220–228

    Article  CAS  Google Scholar 

  13. Magleby KL, Song L (1992) Dependency plots suggest the kinetic structure of ion channels. Proc R Soc Lond B Biol Sci 249:133–142

    Article  CAS  Google Scholar 

  14. Horn R, Lange K (1983) Estimating kinetic constants from single channel data. Biophys J 43:207–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ball FG, Sansom MSP (1989) Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings. Proc R Soc Lond B 236:385–416

    Article  CAS  PubMed  Google Scholar 

  16. Qin F, Auerbach A, Sachs F (1996) Estimating single channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J 70:264–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Colquhoun D, Hawkes AG, Srodzinski K (1996) Joint distributions of apparent open and shut times of single-ion channels and maximum likelihood fitting of mechanisms. Phil Trans R Soc Lond A Math Phys Eng Sci 354:2555–2590

    Article  Google Scholar 

  18. Qin F, Auerbach A, Sachs F (1997) Maximum likelihood estimation of aggregated Markov processes. Proc R Soc Lond [Biol] 264:375–383

    Article  CAS  Google Scholar 

  19. Roux B, Sauve R (1985) A general solution to the time interval omission problem applied to single channel analysis. Biophys J 48:149–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Blatz AL, Magleby KL (1986) Correcting single channel data for missed events. Biophys J 49:967–980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Crouzy SC, Sigworth FJ (1990) Yet another approach to the dwell-time omission problem of single-channel analysis. Biophys J 58:731–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hawkes AG, Jalali A, Colquhoun D (1992) Asymptotic distributions of apparent open times and shut times in a single channel record allowing for the omission of brief events. Phil Trans R Soc Lond B 337:383–404

    Article  CAS  Google Scholar 

  23. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. Cambridge University Press, Cambridge

    Google Scholar 

  24. Kendall MG, Stuart A (1977) The advanced theory of statistics. Griffin, London

    Google Scholar 

  25. Nijenhuis A, Wilf HS (1978) Combinatorial algorithms. Academic Press Inc., New York

    Google Scholar 

  26. Qin F (2004) Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys J 86:1488–1501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fredkin DR, Rice JA (1992) Maximum likelihood estimation and identification directly from single-channel recordings. Proc R Soc Lond B 239:125–132

    Article  Google Scholar 

  28. Venkataramanan L, Walsh JL, Kuc R, Sigworth FJ (1998) Identification of hidden Markov models for ion channel currents – part I: colored background noise. IEEE Trans Signal Process 46:1901–1915

    Article  Google Scholar 

  29. Venkataramanan L, Kuc R, Sigworth FJ (1998) Identification of hidden Markov models for ion channel currents – part II: state-dependent excess noise. IEEE Trans Signal Process 46:1916–1929

    Article  Google Scholar 

  30. Venkataramanan L, Kuc R, Sigworth FJ (2000) Identification of hidden Markov models for ion channel currents – part III: bandlimited, sampled data. IEEE Trans Signal Process 48:376–385

    Article  Google Scholar 

  31. Qin F, Auerbach A, Sachs F (2000) A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys J 79:1915–1927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Qin F, Auerbach A, Sachs F (2000) Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys J 79:1928–1944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  34. Rabiner LR, Wilpon JG, Juang BH (1986) A segmental k-means training procedure for connected word recognition. AT T Tech J 65: 21–31

    Article  Google Scholar 

  35. Forney GD (1973) The Viterbi algorithm. Proc IEEE 61:268–278

    Article  Google Scholar 

  36. Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41:164–171

    Article  Google Scholar 

  37. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat 39:1–38

    Google Scholar 

  38. Colquhoun D, Hatton CJ, Hawkes AJ (2003) The quality of maximum likelihood estimates of ion channel rate constants. J Physiol 547: 699–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Qin F (2007) Principles of single-channel kinetic analysis. In: Molnar P, Hickman JJ (eds) Patch-clamp methods and protocols. Series: methods in molecular biology, 1st edn. Humana, Totowa, NJ, pp 195–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Qin, F. (2014). Principles of Single-Channel Kinetic Analysis. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics