Whole-Cell Patch-Clamp Recordings in Freely Moving Animals

  • Albert K. LeeEmail author
  • Jérôme EpszteinEmail author
  • Michael BrechtEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1183)


The patch-clamp technique and the whole-cell measurements derived from it have greatly advanced our understanding of the coding properties of individual neurons by allowing for a detailed analysis of their excitatory/inhibitory synaptic inputs, intrinsic electrical properties, and morphology. Because such measurements require a high level of mechanical stability they have for a long time been limited to in vitro and anesthetized preparations. Recently, however, a considerable amount of effort has been devoted to extending these techniques to awake restrained/head-fixed preparations allowing for the study of the input–output functions of neurons during behavior. In this chapter we describe a technique extending patch-clamp recordings to awake animals free to explore their environments.

Key words

Intracellular recording Awake-behaving Hippocampus CA1 



This work was supported by an EMBO Long Term Fellowship and HHMI (to A. K. L.); a Human Frontier Science Program Long Term Fellowship, INSERM, Agence Nationale de la Recherche (grant ANR-09-BLAN-0259-01 and ANR-10-R11014AA), Région PACA (project EPIVIRT), A*MIDEX project (ANR-11-IDEX-0001-02) funded by the «Investissements d’Avenir» French Government program (to J.E.); Humboldt Universität zu Berlin, the Bernstein Center for Computational Neuroscience Berlin, the German Federal Ministry of Education and Research (BMBF, Förderkennzeichen 01GQ1001A), NeuroCure, a European Research Council grant, and the Gottfried Wilhelm Leibniz Prize of the DFG (to M.B).


  1. 1.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100PubMedCrossRefGoogle Scholar
  2. 2.
    Pei X, Volgushev M, Vidyasagar TR, Creutzfeldt OD (1991) Whole cell recording and conductance measurements in cat visual cortex in-vivo. Neuroreport 2:485–488PubMedCrossRefGoogle Scholar
  3. 3.
    Ferster D, Jagadeesh B (1992) EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J Neurosci 12:1262–1274PubMedGoogle Scholar
  4. 4.
    Borg-Graham L, Monier C, Fregnac Y (1996) Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. J Physiol Paris 90: 185–188PubMedCrossRefGoogle Scholar
  5. 5.
    Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491–498PubMedCrossRefGoogle Scholar
  6. 6.
    Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446PubMedCrossRefGoogle Scholar
  7. 7.
    Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312:1622–1627PubMedCrossRefGoogle Scholar
  8. 8.
    Covey E, Kauer JA, Casseday JH (1996) Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. J Neurosci 16:3009–3018PubMedGoogle Scholar
  9. 9.
    Aksay E, Gamkrelidze G, Seung HS, Baker R, Tank DW (2001) In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat Neurosci 4:184–193PubMedCrossRefGoogle Scholar
  10. 10.
    Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303: 366–370PubMedCrossRefGoogle Scholar
  11. 11.
    Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9: 608–610PubMedCrossRefGoogle Scholar
  12. 12.
    Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461:941–946PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13: 393–399PubMedCrossRefGoogle Scholar
  14. 14.
    Domnisoru C, Kinkhabwala AA, Tank DW (2013) Membrane potential dynamics of grid cells. Nature 495:199–204PubMedCrossRefGoogle Scholar
  15. 15.
    Schmidt-Hieber C, Häusser M (2013) Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat Neurosci 16: 325–331PubMedCrossRefGoogle Scholar
  16. 16.
    Haider B, Häusser M, Carandini M (2013) Inhibition dominates sensory responses in the awake cortex. Nature 493:97–100PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Long MA, Lee AK (2012) Intracellular recording in behaving animals. Curr Opin Neurobiol 22:34–44PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Margrie TW, Meyer AH, Caputi A, Monyer H, Hasan MT, Schaefer AT, Denk W, Brecht M (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39: 911–918PubMedCrossRefGoogle Scholar
  19. 19.
    Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65:422–435PubMedCrossRefGoogle Scholar
  20. 20.
    Polack PO, Friedman J, Golshani P (2013) Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat Neurosci 16:1331–1339PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412PubMedCrossRefGoogle Scholar
  22. 22.
    Hölscher C, Schnee A, Dahmen H, Setia L, Mallot HA (2005) Rats are able to navigate in virtual environments. J Exp Biol 208: 561–569PubMedCrossRefGoogle Scholar
  23. 23.
    Chen G, King JA, Burgess N, O’Keefe J (2013) How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci U S A 110:378–383PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ravassard P, Kees A, Willers B, Ho D, Aharoni D, Cushman J, Aghajan ZM, Mehta MR (2013) Multisensory control of hippocampal spatiotemporal selectivity. Science 340: 1342–1346PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in freely moving rats. Neuron 51:399–407PubMedCrossRefGoogle Scholar
  26. 26.
    Lee AK, Epsztein J, Brecht M (2009) Head-anchored whole-cell recordings in freely moving rats. Nat Protoc 4:385–392PubMedCrossRefGoogle Scholar
  27. 27.
    Lee AK, Epsztein J, Brecht M (2008) Whole-cell recordings of hippocampal CA1 place cell activity in freely moving rats. Soc Neurosci Abstr 690:21Google Scholar
  28. 28.
    Epsztein J, Lee AK, Brecht M (2010) Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration. Science 327:474–477PubMedCrossRefGoogle Scholar
  29. 29.
    Epsztein J, Brecht M, Lee AK (2011) Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70:109–120PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lee D, Lin BJ, Lee AK (2012) Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337:849–853PubMedCrossRefGoogle Scholar
  31. 31.
    Long MA, Jin DZ, Fee MS (2010) Support for a synaptic chain model of neuronal sequence generation. Nature 468:394–399PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Janelia Farm Research CampusHoward Hughes Medical InstituteAshburnUSA
  2. 2.Institut National de la Santé et de la Recherche Médicale (INSERM U901)MarseilleFrance
  3. 3.Aix-Marseille UniversityMarseilleFrance
  4. 4.Institut de Neurobiologie de la Méditerranée (INMED)Marseille Cedex 09France
  5. 5.Bernstein Center for Computational Neuroscience BerlinHumboldt University of BerlinBerlinGermany
  6. 6.Cluster of Excellence NeuroCureCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations