Acute Brain Slice Methods for Adult and Aging Animals: Application of Targeted Patch Clamp Analysis and Optogenetics

  • Jonathan T. Ting
  • Tanya L. Daigle
  • Qian Chen
  • Guoping Feng
Part of the Methods in Molecular Biology book series (MIMB, volume 1183)

Abstract

The development of the living acute brain slice preparation for analyzing synaptic function roughly a half century ago was a pivotal achievement that greatly influenced the landscape of modern neuroscience. Indeed, many neuroscientists regard brain slices as the gold-standard model system for detailed cellular, molecular, and circuitry level analysis and perturbation of neuronal function. A critical limitation of this model system is the difficulty in preparing slices from adult and aging animals, and over the past several decades few substantial methodological improvements have emerged to facilitate patch clamp analysis in the mature adult stage. In this chapter we describe a robust and practical protocol for preparing brain slices from mature adult mice that are suitable for patch clamp analysis. This method reduces swelling and damage in superficial layers of the slices and improves the success rate for targeted patch clamp recordings, including recordings from fluorescently labeled populations in slices derived from transgenic mice. This adult brain slice method is suitable for diverse experimental applications, including both monitoring and manipulating neuronal activity with genetically encoded calcium indicators and optogenetic actuators, respectively. We describe the application of this adult brain slice platform and associated methods for screening kinetic properties of Channelrhodopsin (ChR) variants expressed in genetically defined neuronal subtypes.

Key words

Acute brain slice Adult animals Patch clamp recording Protective recovery method NMDG aCSF Optogenetics GCaMP Channelrhodopsin 

References

  1. 1.
    Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331–338. doi:10.1002/syn.890030406 PubMedCrossRefGoogle Scholar
  2. 2.
    Moyer JR Jr, Brown TH (1998) Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. J Neurosci Methods 86:35–54PubMedCrossRefGoogle Scholar
  3. 3.
    Bischofberger J, Engel D, Li L, Geiger JR, Jonas P (2006) Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 1:2075–2081. doi:10.1038/nprot.2006.312 PubMedCrossRefGoogle Scholar
  4. 4.
    Mainen ZF, Maletic-Savatic M, Shi SH et al (1999) Two-photon imaging in living brain slices. Methods 18:231–239. doi:10.1006/meth.1999.0776 PubMedCrossRefGoogle Scholar
  5. 5.
    Tanaka Y, Furuta T, Yanagawa Y, Kaneko T (2008) The effects of cutting solutions on the viability of GABAergic interneurons in cerebral cortical slices of adult mice. J Neurosci Methods 171:118–125. doi:10.1016/j.jneumeth.2008.02.021 PubMedCrossRefGoogle Scholar
  6. 6.
    Ye JH, Zhang J, Xiao C, Kong JQ (2006) Patch-clamp studies in the CNS illustrate a simple new method for obtaining viable neurons in rat brain slices: glycerol replacement of NaCl protects CNS neurons. J Neurosci Methods 158:251–259. doi:10.1016/j.jneumeth.2006.06.006 PubMedCrossRefGoogle Scholar
  7. 7.
    Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of co-released inhibitory transmitters at central synapses. J Neurosci 2:6490–6498. doi:10.1523/JNEUROSCI.1500-05.2005 CrossRefGoogle Scholar
  8. 8.
    Aitken PG, Breese GR, Dudek FF et al (1995) Preparative methods for brain slices: a discussion. J Neurosci Methods 59:139–149PubMedCrossRefGoogle Scholar
  9. 9.
    Lipton P, Aitken PG, Dudek FE et al (1995) Making the best of brain slices: comparing preparative methods. J Neurosci Methods 59: 151–156PubMedCrossRefGoogle Scholar
  10. 10.
    Hille B (1971) The permeability of the sodium channel to organic cations in myelinated nerve. J Gen Physiol 58:599–619PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Peca J, Feliciano C, Ting JT et al (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442. doi:10.1038/nature09965 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Zhao S, Ting JT, Atallah HE et al (2011) Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8:745–752PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Chen Q, Cichon J, Wang W et al (2012) Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76:297–308. doi:10.1016/j.neuron.2012.07.011 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ting JT, Feng G (2013) Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav Brain Res 255:3–18. doi:10.1016/j.bbr.2013.02.037 PubMedCrossRefGoogle Scholar
  15. 15.
    Arenkiel BR, Peca J, Davison IG et al (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54:205–218. doi:10.1016/j.neuron.2007.03.005 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Asrican B, Augustine GJ, Berglund K et al (2013) Next-generation transgenic mice for optogenetic analysis of neural circuits. Front Neural Circuits 7:160. doi:10.3389/fncir.2013.00160 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ren J, Qin C, Hu F et al (2011) Habenula “cholinergic” neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69:445–452. doi:10.1016/j.neuron.2010.12.038 PubMedCrossRefGoogle Scholar
  18. 18.
    Wang H, Peca J, Matsuzaki M et al (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 104:8143–8148. doi:10.1073/pnas.0700384104 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ting JT, Peca J, Daigle TL et al (2012) Ultrafast optogenetic control of diverse neuronal populations with cre-inducible ChETA knock-in mice. Soc Neurosci Abs 208:11Google Scholar
  20. 20.
    Madisen L, Mao T, Koch H et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802. doi:10.1038/nn.3078 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34. doi:10.1016/j.neuron.2011.06.004 PubMedCrossRefGoogle Scholar
  22. 22.
    Tang W, Ehrlich I, Wolff SB et al (2009) Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J Neurosci 29:8621–8629. doi:10.1523/JNEUROSCI.0359-09.2009 PubMedCrossRefGoogle Scholar
  23. 23.
    Prakash R, Yizhar O, Grewe B et al (2012) Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 9:1171–1179. doi:10.1038/nmeth.2215 PubMedCrossRefGoogle Scholar
  24. 24.
    Yonehara K, Balint K, Noda M et al (2011) Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature 469:407–410. doi:10.1038/nature09711 PubMedCrossRefGoogle Scholar
  25. 25.
    Li Y, Tsien RW (2012) pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat Neurosci 15:1047–1053. doi:10.1038/nn.3126 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Aoyama K, Suh SW, Hamby AM et al (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126. doi:10.1038/nn1609 PubMedCrossRefGoogle Scholar
  27. 27.
    MacGregor DG, Chesler M, Rice ME (2001) HEPES prevents edema in rat brain slices. Neurosci Lett 303:141–144PubMedCrossRefGoogle Scholar
  28. 28.
    Brahma B, Forman RE, Stewart EE et al (2000) Ascorbate inhibits edema in brain slices. J Neurochem 74:1263–1270PubMedCrossRefGoogle Scholar
  29. 29.
    Huang S, Uusisaari MY (2013) Physiological temperature during brain slicing enhances the quality of acute slice preparations. Front Cell Neurosci 7:48. doi:10.3389/fncel.2013.00048
  30. 30.
    Davie JT, Kole MH, Letzkus JJ et al (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247. doi:10.1038/nprot.2006.164 PubMedCrossRefGoogle Scholar
  31. 31.
    Mattis J, Tye KM, Ferenczi EA et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172. doi:10.1038/nmeth.1808 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jonathan T. Ting
    • 1
  • Tanya L. Daigle
    • 2
    • 3
  • Qian Chen
    • 3
  • Guoping Feng
    • 3
  1. 1.Human Cell Types DepartmentAllen Institute for Brain ScienceSeattleUSA
  2. 2.Department of Cell BiologyDuke University Medical CenterDurhamUSA
  3. 3.McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMITCambridgeUSA

Personalised recommendations