Skip to main content

Investigation of Synaptic Microcircuits Using Patch-Clamp Paired Recordings in Acute Brain Slices

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

Multiple patch clamp recordings represent a powerful tool to investigate functional synaptic connectivity among individual cells. This technical approach is particularly useful to study the synaptic organization of microcircuits in certain brain areas, e.g., the striatum, which are characterized by heterogeneous cell populations and an apparent lack of an anatomically ordered cytoarchitecture. Fast-spiking interneurons (FSIs) represent less than 1 % of striatal neurons, but despite their rareness they exert a strong influence on signal processing by striatal microcircuits and principal cells output. Little is known about the functional properties of chemical and electrical synapses connecting striatal FSIs to each other. Here we describe a simple dual patch clamp approach to investigate electrical and GABAergic synapses in mouse neostriatal slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang F, Aravanis AM, Adamantidis A et al (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581

    Article  CAS  PubMed  Google Scholar 

  2. Spray DC, Harris AL, Bennett MVL (1979) Voltage dependence of junctional conductance in early amphibian embryos. Science 204:432–434

    Article  CAS  PubMed  Google Scholar 

  3. Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    Article  CAS  PubMed  Google Scholar 

  4. Mann-Metzer P, Yarom Y (1999) Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J Neurosci 19:3298–3306

    CAS  PubMed  Google Scholar 

  5. Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75

    Article  CAS  PubMed  Google Scholar 

  6. Landisman CE, Long MA, Beierlein M et al (2002) Electrical synapses in the thalamic reticular nucleus. J Neurosci 22:1002–1009

    CAS  PubMed  Google Scholar 

  7. Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    Article  CAS  PubMed  Google Scholar 

  8. Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    Article  CAS  PubMed  Google Scholar 

  9. Christie JM, Bark C, Hormuzdi SG et al (2005) Connexin36 mediates spike synchrony in olfactory bulb glomeruli. Neuron 46:761–772

    Article  CAS  PubMed  Google Scholar 

  10. Long MA, Jutras MJ, Connors BW, Burwell RD (2005) Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat Neurosci 8:61–66

    Article  CAS  PubMed  Google Scholar 

  11. Vervaeke K, Lorincz A, Gleeson P et al (2010) Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron 67:435–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Curti S, Hoge G, Nagy JI, Pereda AE (2012) Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus. J Neurosci 32:4341–4359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Otsuka K, Kawaguchi Y (2013) Common excitatory synaptic inputs to electrically connected cortical fast-spiking cell networks. J Neurophysiol 110:795–806

    Article  PubMed  Google Scholar 

  14. Koos T, Tepper JM (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2:467–472

    Article  CAS  PubMed  Google Scholar 

  15. Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90:2987–3000

    Article  PubMed  Google Scholar 

  16. Taverna S, Ilijic E, Surmeier DJ (2008) Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. J Neurosci 28:5504–5512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gittis AH, Nelson AB, Thwin MT et al (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30:2223–2234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Avermann M, Tomm C, Mateo C et al (2012) Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J Neurophysiol 107:3116–3134

    Article  CAS  PubMed  Google Scholar 

  19. Szydlowski SN, Pollak Dorocic I, Planert H et al (2013) Target selectivity of feedforward inhibition by striatal fast-spiking interneurons. J Neurosci 33:1678–1683

    Article  CAS  PubMed  Google Scholar 

  20. Bugaysen J, Bar-Gad I, Korngreen A (2013) Continuous modulation of action potential firing by a unitary GABAergic connection in the globus pallidus in vitro. J Neurosci 33:12805–12809

    Article  CAS  PubMed  Google Scholar 

  21. Gerfen CR (1988) Synaptic organization of the striatum. J Electron Microsc Tech 10:265–281

    Article  CAS  PubMed  Google Scholar 

  22. Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32:127–147

    Article  CAS  PubMed  Google Scholar 

  23. Russo G, Nieus T, Maggi S, Taverna S (2013) Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons. Front Cell Neurosci. doi:10.3389/fncel.2013.00209

    Google Scholar 

  24. Bekkers JM, Stevens CF (1995) Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures. J Neurophysiol 73:1145–1156

    CAS  PubMed  Google Scholar 

  25. Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Taverna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Russo, G., Taverna, S. (2014). Investigation of Synaptic Microcircuits Using Patch-Clamp Paired Recordings in Acute Brain Slices. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics