Advertisement

Investigation of Synaptic Microcircuits Using Patch-Clamp Paired Recordings in Acute Brain Slices

  • Giovanni Russo
  • Stefano TavernaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1183)

Abstract

Multiple patch clamp recordings represent a powerful tool to investigate functional synaptic connectivity among individual cells. This technical approach is particularly useful to study the synaptic organization of microcircuits in certain brain areas, e.g., the striatum, which are characterized by heterogeneous cell populations and an apparent lack of an anatomically ordered cytoarchitecture. Fast-spiking interneurons (FSIs) represent less than 1 % of striatal neurons, but despite their rareness they exert a strong influence on signal processing by striatal microcircuits and principal cells output. Little is known about the functional properties of chemical and electrical synapses connecting striatal FSIs to each other. Here we describe a simple dual patch clamp approach to investigate electrical and GABAergic synapses in mouse neostriatal slices.

Key words

Striatum Dual patch-clamp Gap junctions Synaptic connectivity IPSC GABA 

References

  1. 1.
    Zhang F, Aravanis AM, Adamantidis A et al (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581PubMedCrossRefGoogle Scholar
  2. 2.
    Spray DC, Harris AL, Bennett MVL (1979) Voltage dependence of junctional conductance in early amphibian embryos. Science 204:432–434PubMedCrossRefGoogle Scholar
  3. 3.
    Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79PubMedCrossRefGoogle Scholar
  4. 4.
    Mann-Metzer P, Yarom Y (1999) Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J Neurosci 19:3298–3306PubMedGoogle Scholar
  5. 5.
    Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75PubMedCrossRefGoogle Scholar
  6. 6.
    Landisman CE, Long MA, Beierlein M et al (2002) Electrical synapses in the thalamic reticular nucleus. J Neurosci 22:1002–1009PubMedGoogle Scholar
  7. 7.
    Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511PubMedCrossRefGoogle Scholar
  8. 8.
    Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418PubMedCrossRefGoogle Scholar
  9. 9.
    Christie JM, Bark C, Hormuzdi SG et al (2005) Connexin36 mediates spike synchrony in olfactory bulb glomeruli. Neuron 46:761–772PubMedCrossRefGoogle Scholar
  10. 10.
    Long MA, Jutras MJ, Connors BW, Burwell RD (2005) Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat Neurosci 8:61–66PubMedCrossRefGoogle Scholar
  11. 11.
    Vervaeke K, Lorincz A, Gleeson P et al (2010) Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron 67:435–451PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Curti S, Hoge G, Nagy JI, Pereda AE (2012) Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus. J Neurosci 32:4341–4359PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Otsuka K, Kawaguchi Y (2013) Common excitatory synaptic inputs to electrically connected cortical fast-spiking cell networks. J Neurophysiol 110:795–806PubMedCrossRefGoogle Scholar
  14. 14.
    Koos T, Tepper JM (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2:467–472PubMedCrossRefGoogle Scholar
  15. 15.
    Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90:2987–3000PubMedCrossRefGoogle Scholar
  16. 16.
    Taverna S, Ilijic E, Surmeier DJ (2008) Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. J Neurosci 28:5504–5512PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Gittis AH, Nelson AB, Thwin MT et al (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30:2223–2234PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Avermann M, Tomm C, Mateo C et al (2012) Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J Neurophysiol 107:3116–3134PubMedCrossRefGoogle Scholar
  19. 19.
    Szydlowski SN, Pollak Dorocic I, Planert H et al (2013) Target selectivity of feedforward inhibition by striatal fast-spiking interneurons. J Neurosci 33:1678–1683PubMedCrossRefGoogle Scholar
  20. 20.
    Bugaysen J, Bar-Gad I, Korngreen A (2013) Continuous modulation of action potential firing by a unitary GABAergic connection in the globus pallidus in vitro. J Neurosci 33:12805–12809PubMedCrossRefGoogle Scholar
  21. 21.
    Gerfen CR (1988) Synaptic organization of the striatum. J Electron Microsc Tech 10:265–281PubMedCrossRefGoogle Scholar
  22. 22.
    Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32:127–147PubMedCrossRefGoogle Scholar
  23. 23.
    Russo G, Nieus T, Maggi S, Taverna S (2013) Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons. Front Cell Neurosci. doi: 10.3389/fncel.2013.00209 Google Scholar
  24. 24.
    Bekkers JM, Stevens CF (1995) Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures. J Neurophysiol 73:1145–1156PubMedGoogle Scholar
  25. 25.
    Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neuroscience and Brain TechnologiesIstituto Italiano di TecnologiaGenoaItaly

Personalised recommendations