Advertisement

Multiphoton Imaging Approaches for Studying Striatal Dendritic Excitability

  • Joshua L. PlotkinEmail author
  • D. James Surmeier
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1183)

Abstract

As the main input nucleus to the basal ganglia, the striatum is responsible for receiving and integrating highly convergent afferents to ultimately guide action selection and movement initiation. Although the majority of this synaptic integration occurs in the dendrites of striatal projection neurons (SPNs), their thin diameter makes them inaccessible with traditional recording electrodes. Recent advances in optical imaging technologies have allowed us and others to start lifting the veil on the mechanisms governing synaptic integration in the striatum by enabling direct dendritic measurements and manipulations. Here we describe how our lab has approached combining 2-photon imaging and photolysis with electrophysiological recordings to study dendritic excitability and synaptic integration in the striatum.

Key words

2-Photon imaging 2-Photon uncaging Calcium imaging Striatum Dendritic morphology 

Notes

Acknowledgements

We thank Drs. David Wokosin and Michelle Day for their invaluable contributions to establishing this technology in our laboratory. This work was funded by CHDI.

References

  1. 1.
    Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13:259–265PubMedCrossRefGoogle Scholar
  2. 2.
    Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466. doi: 10.1146/annurev-neuro-061010-113641 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kress GJ, Yamawaki N, Wokosin DL et al (2013) Convergent cortical innervation of striatal projection neurons. Nat Neurosci 16:665–667. doi: 10.1038/nn.3397 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Wilson CJ (1992) Dendritic morphology, inward rectification and the functional properties of neostriatal neurons. In: McKenna TM, Davis JL, Zornetzer SF (eds) Single neuron computation (neural networks: foundations to applications), 1st edn. Academic Press Professional Inc, San Diego, CA, pp 141–171CrossRefGoogle Scholar
  5. 5.
    Gertler TS, Chan CS, Surmeier DJ (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28:10814–10824. doi: 10.1523/JNEUROSCI.2660-08.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839. doi: 10.1016/j.neuron.2006.05.019 PubMedCrossRefGoogle Scholar
  7. 7.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedCrossRefGoogle Scholar
  8. 8.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. doi: 10.1038/nbt899 PubMedCrossRefGoogle Scholar
  9. 9.
    Plotkin JL, Guzman JN, Schwarz N et al (2011) Optical approaches to studying the basal ganglia. In: Lane EL, Dunnett SB (eds) Animal models of movement disorders: Volume I, vol 61, Neuromethods. Springer Science + Business Media, New York, pp 191–220. doi: 10.1007/978-1-61779-298-4_10 CrossRefGoogle Scholar
  10. 10.
    Wokosin DL, Squirrell JM, Eliceiri KW, White JG (2003) Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Rev Sci Instrum 74:193–201. doi: 10.1063/1.1524716 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Day M, Wokosin D, Plotkin JL et al (2008) Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci 28:11603–11614. doi: 10.1523/JNEUROSCI.1840-08.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Day M, Wang Z, Ding J et al (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259. doi: 10.1038/nn1632 PubMedCrossRefGoogle Scholar
  13. 13.
    Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44:483–493. doi: 10.1016/j.neuron.2004.10.013 PubMedCrossRefGoogle Scholar
  14. 14.
    Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13:958–966. doi: 10.1038/nn.2592 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Plotkin JL, Day M, Surmeier DJ (2011) Synaptically driven state transitions in distal dendrites of striatal spiny neurons. Nat Neurosci 14:881–888. doi: 10.1038/nn.2848 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Maravall M, Mainen ZF, Sabatini BL, Svoboda K (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J 78:2655–2667. doi: 10.1016/S0006-3495(00)76809-3 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53:249–260. doi: 10.1016/j.neuron.2006.12.017 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations