Skip to main content

Chromosomal Aberration Test Utilities In Vitro and In Vivo

  • Protocol
  • First Online:
Genotoxicity and DNA Repair

Abstract

Human populations are frequently exposed to several mutagenic agents that have the potential to damage the DNA, and this, in many cases, may result in the formation of chromosomal aberrations (CAs). CAs are recognized as an important biomarker of human exposure, being a very important tool for environmental biomonitoring. Although there are several types, little is known about the mechanisms involved in the processing of induced lesions in DNA and how these could result in CAs. Thus, cytogenetics and molecular cytogenetics are tools of great importance for identifying these agents, the conditions that can exercise their mutagenic potential, and their action mechanism. This chapter discusses the history of CA formation and some cytogenetic protocols that may be used to perform the chromosomal aberration test in in vivo and in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Galloway SM (1994) Chromosome aberrations induced in vitro: mechanisms, delayed expression and intriguing questions. Environ Mol Mutagen 23(24):44–53

    Article  CAS  PubMed  Google Scholar 

  2. Natarajan AT (2002) Chromosome aberration: past, present and future. Mutat Res 504 (1–2):3–16

    Article  CAS  PubMed  Google Scholar 

  3. Snustad. DP, Simmons MJ (2013) Variação no número e estrutura dos cromossomos. In Snustad DP, Simmons MJ (eds) Fundamentos de genética, 6ª edn. Guanabara Koogan, Rio de Janeiro (RJ)

    Google Scholar 

  4. Surralés J, Perto S, Ramirez MJ et al (1998) Links between chromatin structure, CNA repair and chromosome fragility. Mutat Res 404:39–44

    Article  Google Scholar 

  5. Palitti F (1998) Mechanisms of the origin of chromosomal aberrations. Mutat Res 404: 133–137

    Article  CAS  PubMed  Google Scholar 

  6. Swierenga SHH, Heddle JA, Sigal EA et al (1991) Recommended protocols based on a survey of current practice in genotoxicity testing laboratories, IV. Chromosome aberration and sister-chromatid exchange in Chinese hamster ovary, V79 Chinese hamster lung and human lymphocyte cultures. Mutat Res 246: 301–322

    Article  CAS  PubMed  Google Scholar 

  7. Evans HJ (1977) Molecular mechanisms in the induction of chromosome aberrations. In: Scott D, Bridges BA, Sobels FH (eds) Progress genet. Toxicologic, vol 2. Elsevier/North Holland, Amsterdam, pp 57–74

    Google Scholar 

  8. Preston RJ, San Sebastian JR, McFee AF (1987) The in vitro human lymphocyte assay for assessing the clastogenicity of chemical agents. Mutat Res 189:175–183

    Article  CAS  PubMed  Google Scholar 

  9. Natarajan AT, Zwanenburg TSB (1982) Mechanisms for chromosomal aberrations in mammalian cells. Mutat Res 95:1–6

    Article  CAS  PubMed  Google Scholar 

  10. Natarajan AT, Balajee AS, Boli JJWA et al (1996) Mechanisms of induction of chromosomal aberrations and their detection by in situ hybridization. Mutat Res 372:247–258

    Article  CAS  PubMed  Google Scholar 

  11. Natarajan AT (1984) Origin and significance of chromosomal alteration. In: Obe G (ed) Mutations in man. Springer, Berlin, pp 156–176

    Chapter  Google Scholar 

  12. Kilman BA, Nichols WW, Levan A (1963) The effects of deoxyadenosine and cytosine arabinoside on the chromosomes of human leukocytes in vitro. Hereditas 50:139–143

    Article  Google Scholar 

  13. Nichols WW (1964) In vitro chromosome breakage induced by arabinosyladenine in human leukocytes. Cancer Res 8:1502–1505

    Google Scholar 

  14. Perthes G (1904) Versucheüber den Einfluss der Röntgenstrahlen und Radiumstrahlen auf die Zellteilung. Deut Med Wochenschr 30: 632–634

    Article  Google Scholar 

  15. Natarajan AT, Vyas RC, Darroudi F et al (1990) DNA lesions, DNA repair and chromosomal aberrations. In: Obe G, Natarajan AT (eds) Chromosomal aberrations: basic and applied aspects. Springer, Berlin, pp 31–40

    Chapter  Google Scholar 

  16. De Vries H (1918) Mass mutations and twin hybrids in Oenotheragrandiflora. Ait Bot Gaz 65:377–422

    Article  Google Scholar 

  17. Muller HJ (1928) The production of mutations by X-rays. Proc Natl Acad Sci U S A 14(9):714–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scott D, Evans HJ (1967) X-ray-induced chromosomal aberrations in Viciafaba. Changes in response during the cell cycle. Mutat Res 4(5):579–599

    Article  CAS  PubMed  Google Scholar 

  19. Evans HJ, Scott D (1969) The induction of chromosome aberrations by nitrogenmustard and its dependence on DNA synthesis. Proc R Soc Lond Ser B 173:491–512

    Article  CAS  Google Scholar 

  20. Natarajan AT, Obe G, Hayashi M (2008) Chromosomal aberrations. Mutat Res 657(1): 1–2

    Article  CAS  PubMed  Google Scholar 

  21. Amorim MIM, Mergler D, Bahia MO et al (2000) Cytogenetic damage related to low levels of methyl mercury contamination in the Brazilian Amazon. An Acad Bras Cienc 72(4):497–507

    Article  CAS  PubMed  Google Scholar 

  22. Natarajan AT, Santos SJ, Darroudi F et al (1998) 137Cesium-induced chromosome aberrations analyzed by fluorescence in situ hybridization: eight years follow up of the Goiânia radiation accident victms. Mutat Res 400(1–2):299–312

    Article  CAS  PubMed  Google Scholar 

  23. Guimarães APA, Dias FL, Cardoso RS et al (2003) Cromosomal aberration induced by 5-azacytidine combined with VP-16 (etoposide) in CHO-K1 and XRS-5 cell lines. Teratog Carcinog Mutag 23(51):171–186

    Article  Google Scholar 

  24. FDA—Food and Drug Administration (2012) ICH S2 (R1), Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use

    Google Scholar 

  25. OECD—Organization for Economic Cooperation and Development. Guideline for testing of chemicals. Proposal for updating test guideline 473 (2012) OECD 473—In vitro Mammalian Chromosome Aberration Test. Adopted: 21st July 1997

    Google Scholar 

  26. Pfuhler S, Fellows M, Benthem JV et al (2011) In vitro genotoxicity test approaches with better predictivity: summary of an IWGT workshop. Mutat Res 723(2):101–107

    Article  CAS  PubMed  Google Scholar 

  27. Evans HJ (1976) Cytological methods for detecting chemical mutagens. In: Hollaender A (ed) Chemical mutagens, principles and methods for their detection, vol 4. Plenum Press, New York, London, pp 1–29

    Chapter  Google Scholar 

  28. Ishidate M Jr, Sofuni T (1985) The in vitro chromosomal aberration test using Chinese hamster lung (CHL) fibroblast cells in culture. In: Ashby J et al (eds) Progress in mutation research, vol 5. Elsevier Science Publishers, Amsterdam, New York, Oxford, pp 427–432

    Google Scholar 

  29. Galloway SM, Armstrong MJ, Reuben C et al (1987) Chromosome aberration and sister chromatid exchanges in Chinese hamster ovary cells: evaluation of 108 chemicals. Environ Mol Mutagen 10(10):1–175

    Article  CAS  PubMed  Google Scholar 

  30. Peres CM, Curi R (2005) Como Cultivar células, 1st edn. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  31. Galloway S (2000) Cytotoxicity and chromosome aberrations in vitro: experience in industry and the case for an upper limit on toxicity in the aberration assay. Environ Mol Mutagen 35:191–201

    Article  CAS  PubMed  Google Scholar 

  32. Lorge E, Hayashi M, Albertini S et al (2008) Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test. I. Theoretical aspects. Mutat Res 655:1–3

    Article  CAS  PubMed  Google Scholar 

  33. Galloway S, Lorge E, Aardema MJ et al (2011) Workshop summary: top concentration for in vitro mammalian cell genotoxicity assays; and report from working group on toxicity measures and top concentration for in vitro cytogenetics assays (chromosome aberrations and micronucleus). Mutat Res 723:77–83

    Article  CAS  PubMed  Google Scholar 

  34. Dusinska M, Kazimırova A, Barancokova M et al (2003) Nutritional supplementation with antioxidants decreases chromosomal damage in humans. Mutagenesis 18:371–376

    Article  CAS  PubMed  Google Scholar 

  35. Shaffer LG, Tommerup N (2005) ISCN 2005: an international system for human cytogenetic nomenclature. Cytogenetic & genome research. S. Karger AG, Basel, Switzerland

    Google Scholar 

  36. Tijo JH, Levan A (1956) The chromosome number in man. Hereditas 44:1–6

    Google Scholar 

  37. Moorhead PS, Noweel PC, Mellman WJ et al (1960) Chromosome preparation of leukocytes cultured from Human peripheric Blood. Exp Cell Res 20:613–616

    Article  CAS  PubMed  Google Scholar 

  38. Caspersson T, Farber S, Foley GE et al (1968) Chemical differentiation along metaphase chromosomes. Exp Cell Res 49(1):219–222

    Article  CAS  PubMed  Google Scholar 

  39. Latt AS, Schreck RR (1980) Sister chromatid exchange. Am J Hum Genet 32:297–313

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Carpenter NJ (2001) Molecular cytogenetics. Semin Pediatr Neurol 8(3):135–146

    Article  CAS  PubMed  Google Scholar 

  41. Denver Conference (1960) The identification of individual chromosomes especially in man. Am J Hum Genet 12:384–389

    Google Scholar 

  42. International Atomic Energy Agency (1986) Biological dosimetry chromosome aberrations analysis for dose assessment. Technical Report series n 260, Vienna, IAEA, STI/PUB/10/260

    Google Scholar 

  43. Obe G, Pfeiffer P, Savage JRK et al (2002) Chromosomal aberration: formation, identification and distribuition. Mutat Res 504:17–36

    Article  CAS  PubMed  Google Scholar 

  44. Gomes JJ, Frade SPPJ, Figueiredo BJ et al (2011) Comparação de Métodos de cultura de Linfócitos em sangue periférico para análise citogenética, 2ª edn. Reunião Brasileira de Citogenética. Águas de Lindóia (SP)

    Google Scholar 

  45. Ribeiro LR, Salvadori DMF, Marques EK (2003) Mutagênese Ambiental. Ed ULBRA, Canoas, pp 151–172

    Google Scholar 

  46. Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci USA 64(2):600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kallioniemi A, Visakorpi T, Karhu R et al (1996) Gene copy number analysis by fluorescence in situ hybridization and comparative genomic hybridization. Methods 9(1):113–121

    Article  CAS  PubMed  Google Scholar 

  48. Shinawi M, Cheung SW (2008) The array CGH and its clinical applications. Drug Discov Today 13(17–18):760–770

    Article  CAS  PubMed  Google Scholar 

  49. Maluf SW, Riegel M (2011) Citogenética humana. Ed Artmed, Porto Alegre, p 334

    Google Scholar 

  50. Arnoldus EP, Dreef EJ, Noordermeer IA et al (1991) Feasibility of in situ hybridisation with chromosome specific DNA probes on paraffin wax embedded tissue. J Clin Pathol 44(11): 900–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Costa Raiol LC, Figueira Silva EC, Mendes da Fonseca D et al (2007) Interrelationship between MYC gene numerical aberrations and protein expression in individuals from northern Brazil with early gastric adenocarcinoma. Cancer Genet Cytogenet 181(1):31–35

    Article  Google Scholar 

  52. Das K, Tan P (2013) Molecular cytogenetics: recent developments and applications in cancer. Clin Genet 84(4):315–325

    Article  CAS  PubMed  Google Scholar 

  53. Liehr T, Starke H, Weise A et al (2004) Multicolor FISH probe sets and their applications. Claussen Histol Histopathol 19: 229–237

    CAS  Google Scholar 

  54. Imataka G, Arisaka O (2012) Chromosome analysis using spectral karyotyping (SKY). Cell Biochem Biophys 62:13–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12(4):368–375

    Article  CAS  PubMed  Google Scholar 

  56. Tanke HJ, Wiegant J, van Gijlswijk RP et al (1999) New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genet 7(1):2–11

    Article  CAS  PubMed  Google Scholar 

  57. Guimarães AC, Antunes LM, Ribeiro HF et al (2009) Cytogenetic biomonitoring of inhabitants of a large uranium mineralization área: the municipalities of Monte Alegre, Phainha and Alenquer, in the State of Pará, Brazil. Cell Biol Toxicol 26(5):403–419

    Article  Google Scholar 

  58. Min T (2003) Fish techniques. In: Swansbury J (ed) Cancer cytogenetics. Methods and protocols. Humana Press, Totowa, NJ

    Google Scholar 

  59. Natarajan AT (1993) Techniques for biomonitoring of human populations for genetic effects. Rev Brasil Genet 16(3):841–847

    Google Scholar 

  60. Little John B (2000) Ionizing radiation. In: Bast RC Jr, Kufe DW, Pollock RE et al (eds) Cancer medicine, 5th edn. BC Decker Inc., 2400 pp, Hamilton (ON)

    Google Scholar 

  61. Therman E, Susman M (1996) Cromossomos humanos: estructura, comportamiento y efectos, 3ª edn. Revista Brasileira de Genética, Ribeirão Preto, 404 p

    Google Scholar 

  62. Bahia MO (1997) Le potentielgénotoxique du mercure: mutations PRET et effects cytogénétiques. Dissertação de Mestrado em Biologia. Montreal, Université du Quebéc á Montreal, 119 p

    Google Scholar 

  63. Amorim MI, Ferrari I, Bahia Mde O et al (2008) Genotoxic effects of white fluorescent light on human lymphocytes in vitro. Mutat Res 652(2):204–207

    Article  CAS  PubMed  Google Scholar 

  64. Movajagh A, Maleki F, Mohammadzadeh SG et al (2005) Association of glutathione S-transferase and chromosomal aberrations as a means to determine occupational exposure. Int Cong Ser 1276:197–198

    Article  Google Scholar 

  65. Castañeda AN, Téllez MGO, Rodriguez-Annaiz R (2006) Genotoxic profile of inhibitors of topoisomerase I (camptotecin) and II (etoposide) in a mitotic recombination and sex-chromosome loss somatic eye assay of Drosophila melanogaster. Mutat Res 604 (1–2):83–90

    Google Scholar 

  66. Du Four VA, Janssen CR et al (2005) Genotoxic and mutagenic activity of environmental air samples from different rural, urban and industrial sites in Flanders, Belgium. Mutat Res 588(2):106–117

    Article  PubMed  Google Scholar 

  67. Gattás GJF, Segre M, WünschFilho V (2002) Genetics, molecular biology and ethics: work and health connections. Ciência Saúde Coletivan 7(1):159–167

    Google Scholar 

  68. Natarajan AT, Obe G (1980) Screening of human populations for mutations induced by environmental pollutants: use of human lymphocite system. Ecotoxicol Environ Saf 4: 468–481

    Article  CAS  PubMed  Google Scholar 

  69. Rabello-Gay MN, Rodrigues MA, La R et al (1991) Mutagênese, teratogênese e carcinogênese: métodos e critérios de avaliação. Sociedade Brasileira de Genética, Revista Brasileira de Genética, Ribeirão Preto, 246 p

    Google Scholar 

  70. Brusick DJ, Young RR (1981) IERL-RTP procedure: manual level. In: Environmental assessment biological tests. (EPA-600/8-81-024), NTISPB 82-228966. Kenson. Litton Bionetics

    Google Scholar 

  71. Chaudhary M, Payasi A (2013) Evaluation of genotoxicity of CVA1020 through Ames and in vitro chromosomal aberration tests. Br J Pharmacol Toxicol 4(3):95–100

    CAS  Google Scholar 

  72. Preston JR, Au W, Bender MA et al (1981) Mammalian in vivo and in vitro cytogenetic assay: a report of the U.S.EPA’s Gene Tox Program. Mutat Res 87:143–188

    Article  CAS  PubMed  Google Scholar 

  73. Savage JRK (1976) Classification and relationships of induced chromosomal structural changes. J Med Genet 13:102–122

    Article  Google Scholar 

  74. Al Sabati K, Lloyd DC, Edwards AA et al (1992) A survey of lymphocyte chromosomal damage in Slovenian workers exposed to occupational clastogens. Mutat Res 280(3):215–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommel R. Burbano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guimarães, A.P.A. et al. (2014). Chromosomal Aberration Test Utilities In Vitro and In Vivo. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics