Skip to main content

Testing the Genotoxic Potential of Nanomaterials Using Drosophila

  • Protocol
  • First Online:
Book cover Genotoxicity and DNA Repair

Abstract

Nanogenotoxicology is an emergent area of research aiming to determine the potential risk of nanomaterials. Since most of the established studies use in vitro approaches, neglecting the repair and metabolic properties of the whole organism, some doubts about the accuracy of the obtained results exist. To overcome this gap more in vivo approaches testing the potential genotoxic risk of nanomaterials are required. In this context we propose to use Drosophila melanogaster as a useful model to study the possible genotoxic risk associated to nanoparticles exposure. Until now, only few studies have been carried out and they all use the wing-spot assay that detects the induction of somatic mutation and recombination events in the wing imaginal disks. This test is based on the principle that the loss of heterozygosis and the corresponding expression of the suitable recessive markers, multiple wing hairs and flare-3, can lead to the formation of mutant clone cells in growing up larvae, which are expressed as mutant spots on the wings of adult flies. The protocol to perform the wing-spot assay is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363

    Article  CAS  PubMed  Google Scholar 

  2. Medina C, Santos-Martinez MJ, Radomski A et al (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Casey A, Herzog E, Lyng FM et al (2008) Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett 179:78–84

    Article  CAS  PubMed  Google Scholar 

  5. Rahman MF, Wang J, Patterson TA et al (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver nanoparticles. Toxicol Lett 187:15–21

    Article  CAS  PubMed  Google Scholar 

  6. Pan X, Redding JE, Wiley PA et al (2010) Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 79:113–116

    Article  CAS  PubMed  Google Scholar 

  7. Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  8. Donaldson K, Stone V, Tran CL et al (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  PubMed  Google Scholar 

  10. Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reiter LT, Potocki L, Chien S et al (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koh K, Evans JM, Hendricks JC et al (2006) A Drosophila model for age associated changes in sleep: wake cycles. Proc Natl Acad Sci U S A 103:13843–13847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolf MJ, Amrein H, Izatt JA et al (2006) Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci U S A 103:1394–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khurana V, Lu Y, Steinhilb ML et al (2006) TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr Biol 16:230–241

    Article  CAS  PubMed  Google Scholar 

  15. Pandey A, Chandra S, Chauhan LK et al (2013) Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochim Biophys Acta 1830:2256–2266

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Chen N, Wei Y et al (2012) Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila. Sci Rep 2:563

    PubMed  PubMed Central  Google Scholar 

  17. Vecchio G, Galeone A, Brunetti V et al (2012) Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS One 7:e29980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorth DJ, Rand DM, Webster TJ (2011) Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomedicine 6:343–350

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Posgai R, Cipolla-McCulloch CB, Murphy KR et al (2011) Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85:34–42

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Vinson D, Abt D et al (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43:6357–6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galeone A, Vecchio G, Malvindi MA et al (2012) In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity. Nanoscale 4:6401–6407

    Article  CAS  PubMed  Google Scholar 

  22. Demir E, Vales G, Kaya B et al (2011) Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5:417–424

    Article  CAS  PubMed  Google Scholar 

  23. Vales G, Demir E, Kaya B et al (2013) Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7:462–468

    Article  CAS  PubMed  Google Scholar 

  24. Demir E, Turna F, Vales G et al (2013) In vivo genotoxicity assessment of titanium, zirconium and aluminium nanoparticles, and their microparticulated forms, in Drosophila. Chemosphere 93:2304–2310

    Article  CAS  PubMed  Google Scholar 

  25. de Andrade LR, Brito AS, Melero AM et al (2014) Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test. Ecotoxicol Environ Saf 99:92–97

    Article  PubMed  Google Scholar 

  26. Graf U, Würgler FE, Katz AJ et al (1984) Somatic mutation and recombination test in Drosophila melanogaster. Environ Mutagen 6:153–188

    Article  CAS  PubMed  Google Scholar 

  27. Lindsley DL, Zimm GG (1992) The Genome of Drosophila melanogaster. Academic, San Diego

    Google Scholar 

  28. Kastenbaum MA, Bowman KO (1970) Tables for determining the statistical significance of mutation frequencies. Mutat Res 9:527–549

    Article  CAS  PubMed  Google Scholar 

  29. Frei H, Würgler FE (1988) Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result. Mutat Res 203:297–308

    Article  CAS  PubMed  Google Scholar 

  30. Alonso-Moraga A, Graf U (1989) Genotoxicity testing of antiparasitic nitrofurans in the Drosophila wing somatic mutation and recombination test. Mutagenesis 4:105–110

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of their research activity by CIRIT (project 2009SGR-725). BA was supported by a postdoctoral fellowship from the Universitat Autònoma de Barcelona (UAB). MAA was supported by a predoctoral fellowship from the Egyptian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard Marcos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Abdalaziz, M.A., Annangi, B., Marcos, R. (2014). Testing the Genotoxic Potential of Nanomaterials Using Drosophila. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics