Skip to main content

Random Mutagenesis by Error-Prone Pol Plasmid Replication in Escherichia coli

  • Protocol
  • First Online:
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1179))

Abstract

Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalby PA (2011) Strategy and success for the directed evolution of enzymes. Curr Opin Struct Biol 21:473–480

    Article  CAS  PubMed  Google Scholar 

  2. Yuan L, Kurek I, English J, Keenan R (2005) Laboratory-directed protein evolution. Microbiol Mol Biol Rev 69:373–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Lutz S (2010) Beyond directed evolution—semi-rational protein engineering and design. Curr Opin Biotechnol 21:734–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Weinreich DM, Watson RA, Chao L (2005) Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59:1165–1174

    Article  CAS  PubMed  Google Scholar 

  5. Bloom JD, Arnold FH (2009) In the light of directed evolution: pathways of adaptive protein evolution. Proc Natl Acad Sci USA 106 Suppl 1:9995–10000

    Google Scholar 

  6. Kagami O, Kikuchi M, Harayama S (2004) Single-stranded DNA family shuffling. Methods Enzymol 388:11–21

    Article  CAS  PubMed  Google Scholar 

  7. Zhao H, Zha W (2006) In vitro ‘sexual’ evolution through the PCR-based staggered extension process (StEP). Nat Protoc 1:1865–1871

    Article  CAS  PubMed  Google Scholar 

  8. Kao KC, Sherlock G (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40:1499–1504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Araya CL, Fowler DM (2011) Deep mutational scanning: assessing protein function on a massive scale. Trends Biotechnol 29:435–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nguyen AW, Daugherty PS (2003) Production of randomly mutated plasmid libraries using mutator strains. Methods Mol Biol 231: 39–44

    CAS  PubMed  Google Scholar 

  11. Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    Article  CAS  PubMed  Google Scholar 

  12. Soskine M, Tawfik DS (2010) Mutational effects and the evolution of new protein functions. Nat Rev Genet 11:572–582

    Article  CAS  PubMed  Google Scholar 

  13. Troll C, Alexander D, Allen J, Marquette J, Camps M (2011) Mutagenesis and functional selection protocols for directed evolution of proteins in E. coli. J Vis Exp 49:e2505

    Google Scholar 

  14. Camps M, Naukkarinen J, Johnson BP, Loeb LA (2003) Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A 100:9727–9732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shinkai A, Loeb LA (2001) In vivo mutagenesis by Escherichia coli DNA polymerase I. Ile(709) in motif A functions in base selection. J Biol Chem 276:46759–46764

    Article  CAS  PubMed  Google Scholar 

  16. Uyemura D, Lehman IR (1976) Biochemical characterization of mutant forms of DNA polymerase I from Escherichia coli. I. The polA12 mutation. J Biol Chem 251:4078–4084

    CAS  PubMed  Google Scholar 

  17. Koch DJ, Chen MM, van Beilen JB, Arnold FH (2009) In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6. Appl Environ Microbiol 75: 337–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Shinkai A, Patel PH, Loeb LA (2001) The conserved active site motif A of Escherichia coli DNA polymerase I is highly mutable. J Biol Chem 276:18836–18842

    Article  CAS  PubMed  Google Scholar 

  19. Johne R, Muller H, Rector A, van Ranst M, Stevens H (2009) Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol 17:205–211

    Article  CAS  PubMed  Google Scholar 

  20. Miura H, Inoko H, Inoue I, Tanaka M, Sato M, Ohtsuka M (2011) Simple cloning strategy using GFPuv gene as positive/negative indicator. Anal Biochem 416:237–239

    Article  CAS  PubMed  Google Scholar 

  21. Camps M (2010) Modulation of ColE1-like plasmid replication for recombinant gene expression. Recent Pat DNA Gene Seq 4: 58–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. McHenry CS (2011) DNA replicases from a bacterial perspective. Annu Rev Biochem 80:403–436

    Article  CAS  PubMed  Google Scholar 

  23. Troll CJ, Yoder J, Alexander D, Hernández J, Loh Y, Camps M (2013) Mutagenic footprint of low-fidelity Pol I replication in E. coli reveals an extensive interplay between Pol I and Pol III during ColE1 plasmid replication. Curr Genet (Nov 2 epublished ahead of print)

    Google Scholar 

  24. Wong TS, Roccatano D, Zacharias M, Schwaneberg U (2006) A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol 355: 858–871

    Article  CAS  PubMed  Google Scholar 

  25. Wong TS, Zhurina D, Schwaneberg U (2006) The diversity challenge in directed protein evolution. Comb Chem High Throughput Screen 9:271–288

    Article  CAS  PubMed  Google Scholar 

  26. Allen JM, Simcha DM, Ericson NG, Alexander DL, Marquette JT, Van Biber BP, Troll CJ, Karchin R, Bielas JH, Loeb LA, Camps M (2011) Roles of DNA polymerase I in leading and lagging-strand replication defined by a high-resolution mutation footprint of ColE1 plasmid replication. Nucleic Acids Res 39: 7020–7033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by K08 award CA116429-01A1 of the NCI to M.C. and by R01 award ES019625-01 of NIEHS to M.C. The authors would like to thank Dr. Roel Schaaper for the helpful input on the mutagenic footprint of LF-Pol I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Camps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alexander, D.L., Lilly, J., Hernandez, J., Romsdahl, J., Troll, C.J., Camps, M. (2014). Random Mutagenesis by Error-Prone Pol Plasmid Replication in Escherichia coli . In: Gillam, E., Copp, J., Ackerley, D. (eds) Directed Evolution Library Creation. Methods in Molecular Biology, vol 1179. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1053-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1053-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1052-6

  • Online ISBN: 978-1-4939-1053-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics