Simplified Protein Purification Using an Autoprocessing, Inducible Enzyme Tag

  • Aimee ShenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1177)


The development of affinity tags has greatly simplified protein purification procedures. A variety of affinity tags are now available to improve expression, solubility, and/or tag removal. In this chapter, we describe a method for purifying recombinant proteins expressed in Escherichia coli that uses a highly specific, inducible, C-terminal autoprocessing protease tag. This method streamlines affinity purification, cleavage, and tag separation into a one-step purification procedure, avoiding the need to remove fusion tags from target proteins with exogenous proteases. In addition to accelerating protein purification, we show that this method can enhance the expression, stability, and solubility of select proteins.

Key words

Protein affinity tag Autoprocessing Inducible Protein purification Tag cleavage Protein stability Protein solubility Protein expression 



This work was supported by NIH grant R00 GM092934/2-4 and a Vermont Immunology and Infectious Disease Center COBRE grant (P20 TT021905) to A.S.


  1. 1.
    Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48(1):1–13PubMedCrossRefGoogle Scholar
  2. 2.
    Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23(6):316–320, doi:S0167-7799(05)00084-3 [pii] 10.1016/j.tibtech.2005.03.012 PubMedCrossRefGoogle Scholar
  3. 3.
    Shen A, Lupardus PJ, Morell M, Ponder EL, Sadaghiani AM, Garcia KC, Bogyo M (2009) Simplified, enhanced protein purification using an inducible, autoprocessing enzyme tag. PLoS One 4(12):e8119. doi: 10.1371/journal.pone.0008119 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Sheahan KL, Cordero CL, Satchell KJ (2007) Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. EMBO J 26(10):2552–2561PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Shen A, Lupardus PJ, Albrow VE, Guzzetta A, Powers JC, Garcia KC, Bogyo M (2009) Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat Chem Biol 5(7):469–478PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Prochazkova K, Shuvalova LA, Minasov G, Voburka Z, Anderson WF, Satchell KJ (2009) Structural and molecular mechanism for autoprocessing of MARTX Toxin of Vibrio cholerae at multiple sites. J Biol Chem 284(39):26557–26568Google Scholar
  7. 7.
    Michell RH (2008) Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9(2):151–161PubMedCrossRefGoogle Scholar
  8. 8.
    Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64(6):1033–1043PubMedCrossRefGoogle Scholar
  9. 9.
    Wright O, Yoshimi T, Tunnacliffe A (2012) Recombinant production of cathelicidin-derived antimicrobial peptides in Escherichia coli using an inducible autocleaving enzyme tag. N Biotechnol 29(3):352–358, doi:S1871-6784(11)00249-4 [pii] 10.1016/j.nbt.2011.11.001 PubMedCrossRefGoogle Scholar
  10. 10.
    Parkar AA, Stow MD, Smith K, Panicker AK, Guilloteau JP, Jupp R, Crowe SJ (2000) Large-scale expression, refolding, and purification of the catalytic domain of human macrophage metalloelastase (MMP-12) in Escherichia coli. Protein Expr Purif 20(2):152–161PubMedCrossRefGoogle Scholar
  11. 11.
    O’Callaghan CA, Byford MF, Wyer JR, Willcox BE, Jakobsen BK, McMichael AJ, Bell JI (1999) BirA enzyme: production and application in the study of membrane receptor-ligand interactions by site-specific biotinylation. Anal Biochem 266(1):9–15PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Microbiology and Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations