Advertisement

Purification of E. coli Proteins Using a Self-Cleaving Chitin-Binding Affinity Tag

  • Michael J. Coolbaugh
  • David W. WoodEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1177)

Abstract

The use of affinity tags to purify recombinant proteins is ubiquitous in molecular biology. However, tag removal after purification still remains a challenge. The most commonly used method, proteolytic digestion, has several drawbacks that make the process complex and costly. One alternative to the use of proteolytic digestion is the use of self-cleaving purification tags. Here, we describe a system that combines a chitin-binding domain (CBD) tag with the ∆I-CM intein to yield a self-cleaving purification tag. A protein gene of interest is genetically fused downstream of the tag, generating a fusion protein that can be rapidly and easily purified using a chitin resin. Intein self-cleavage is then induced by a simple pH and temperature shift, liberating the free target protein. This system can be used to readily purify any recombinant protein that can be expressed in E. coli, and has the potential to be applied to a wide variety of additional tags and expression hosts.

Key words

Protein purification Intein Affinity chromatography Self-cleaving tag E. coli Purification platform Chitin binding domain 

Notes

Acknowledgement

This work was supported by Army Research Office Grant W911NF-11-1-0118.

References

  1. 1.
    Kimple ME, Sondek J (2004) Overview of affinity tags for protein purification. Curr Protoc Protein Sci Chapter 9:Unit 9 9. doi: 10.1002/0471140864.ps0909s36
  2. 2.
    Malhotra A (2009) Tagging for protein expression. Methods Enzymol 463:239–258, doi: 10.1016/S0076-6879(09)63016-0. S0076-6879(09)63016-0 [pii]PubMedCrossRefGoogle Scholar
  3. 3.
    Uhlen M (2008) Affinity as a tool in life science. Biotechniques 44(5):649–654, doi: 10.2144/000112803. 000112803 [pii]PubMedCrossRefGoogle Scholar
  4. 4.
    Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23(6):316–320PubMedCrossRefGoogle Scholar
  5. 5.
    Kuo WH, Chase HA (2011) Exploiting the interactions between poly-histidine fusion tags and immobilized metal ions. Biotechnol Lett 33(6):1075–1084. doi: 10.1007/s10529-011-0554-3 PubMedCrossRefGoogle Scholar
  6. 6.
    Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48(1):1–13, doi:S1046-5928(05)00426-2 [pii].  10.1016/j.pep.2005.12.002 PubMedCrossRefGoogle Scholar
  7. 7.
    Fong BA, Wu WY, Wood DW (2010) The potential role of self-cleaving purification tags in commercial-scale processes. Trends Biotechnol 28(5):272–279, doi: 10.1016/j.tibtech.2010.02.003. S0167-7799(10)00033-8 [pii]
  8. 8.
    Li Y (2011) Self-cleaving fusion tags for recombinant protein production. Biotechnol Lett 33(5):869–881. doi: 10.1007/s10529-011-0533-8 PubMedCrossRefGoogle Scholar
  9. 9.
    Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA, Pelletier JJ, Paulus H, Xu MQ (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192(2):271–281, doi:S0378-1119(97)00105-4 [pii]PubMedCrossRefGoogle Scholar
  10. 10.
    Chong S, Montello GE, Zhang A, Cantor EJ, Liao W, Xu MQ, Benner J (1998) Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res 26(22):5109–5115, doi:gkb815 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Wood DW, Derbyshire V, Wu W, Chartrain M, Belfort M, Belfort G (2000) Optimized single-step affinity purification with a self-cleaving intein applied to human acidic fibroblast growth factor. Biotechnol Prog 16(6):1055–1063, doi:bp0000858 [pii]. 10.1021/bp0000858PubMedCrossRefGoogle Scholar
  12. 12.
    Wood DW, Wu W, Belfort G, Derbyshire V, Belfort M (1999) A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol 17(9):889–892. doi: 10.1038/12879 PubMedCrossRefGoogle Scholar
  13. 13.
    Wu WY, Miller KD, Coolbaugh M, Wood DW (2011) Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments. Protein Expr Purif 76(2):221–228, doi:10.1016/j.pep.2010.12.004. S1046-5928(10)00342-6 [pii]PubMedCrossRefGoogle Scholar
  14. 14.
    Fong BA, Wood DW (2010) Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation. Microb Cell Fact 9:77, doi: 10.1186/1475-2859-9-77. 1475-2859-9-77 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Fong BA, Gillies AR, Ghazi I, LeRoy G, Lee KC, Westblade LF, Wood DW (2010) Purification of Escherichia coli RNA polymerase using a self-cleaving elastin-like polypeptide tag. Protein Sci 19(6):1243–1252. doi: 10.1002/pro.403 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Wu WY, Mee C, Califano F, Banki R, Wood DW (2006) Recombinant protein purification by self-cleaving aggregation tag. Nat Protoc 1(5):2257–2262, doi:nprot.2006.314 [pii].  10.1038/nprot.2006.314 PubMedCrossRefGoogle Scholar
  17. 17.
    Banki MR, Gerngross TU, Wood DW (2005) Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci 14(6):1387–1395, doi:ps.041296305 [pii].  10.1110/ps.041296305 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Gallagher SR (2012) One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Mol Biol Chapter 10:Unit 10 12A. doi: 10.1002/0471142727.mb1002as97

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations