Advertisement

Purification of a Recombinant Protein with Cellulose-Binding Module 3 as the Affinity Tag

  • Dongmei Wang
  • Jiong HongEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1177)

Abstract

Easy-to-perform and low-cost protein purification methods are in high demand for the mass production of commonly used enzymes that play an important role in bioeconomy. A low-cost and rapid recombinant protein purification system was developed using CBM3 (family 3 cellulose-binding module) as affinity tag. This protocol describes the purification of CBM3-fusion protein and tag-free protein expressed in Pichia pastoris using CBM3 as an affinity tag.

Key words

Cellulose-binding module Affinity tag Protein purification Intein Cellulose 

Notes

Acknowledgments

This work was supported by a grant-in-aid from the Scientific Research Foundation for Returned Scholars, Ministry of Education of China, the Fundamental Research Funds for the Central Universities (No. KA2070000008), and the National Basic Research Program of China (No. 2011CBA00801).

References

  1. 1.
    Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48(1):1–13PubMedCrossRefGoogle Scholar
  2. 2.
    Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17(4):353–358PubMedCrossRefGoogle Scholar
  3. 3.
    Hartley JL (2006) Cloning technologies for protein expression and purification. Curr Opin Biotechnol 17(4):359–366PubMedCrossRefGoogle Scholar
  4. 4.
    Fong BA, Wu WY, Wood DW (2010) The potential role of self-cleaving purification tags in commercial-scale processes. Trends Biotechnol 28(5):272–279. doi: 10.1016/j.tibtech.2010.02.003
  5. 5.
    Przybycien TM, Pujar NS, Steele LM (2004) Alternative bioseparation operations: life beyond packed-bed chromatography. Curr Opin Biotechnol 15:469–478PubMedCrossRefGoogle Scholar
  6. 6.
    Ramirez C, Fung J, Miller RC, Antony R, Warren J, Kilburn DG (1993) A bifunctional affinity linker to couple antibodies to cellulose. Nat Biotech 11(12):1570–1573CrossRefGoogle Scholar
  7. 7.
    Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kavoosi M, Meijer J, Kwan E, Creagh AL, Kilburn DG, Haynes CA (2004) Inexpensive one-step purification of polypeptides expressed in Escherichia coli as fusions with the family 9 carbohydrate-binding module of xylanase 10A from T. maritima. J Chromatogr B 807: 87–94CrossRefGoogle Scholar
  9. 9.
    Tomme P, Boraston AB, McLean B, Kormos JM, Creagh AL, Sturch K, Gilkes NR, Haynes CA, Warren RA, Kilburn DG (1998) Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl 715:283–296PubMedCrossRefGoogle Scholar
  10. 10.
    Murashima K, Kosugi A, Doi RH (2003) Solubilization of cellulosomal cellulases by fusion with cellulose-binding domain of noncellulosomal cellulase engd from Clostridium cellulovorans. Proteins 50(4):620–628PubMedCrossRefGoogle Scholar
  11. 11.
    Ahn J, Choi E, Lee H, Hwang S, Kim C, Jang H, Haam S, Jung J (2004) Enhanced secretion of Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae by translational fusion to cellulose-binding domain. Appl Microbiol Biotechnol 64:833–839PubMedCrossRefGoogle Scholar
  12. 12.
    Hong J, Ye XH, Wang YR, Zhang YHP (2008) Bioseparation of recombinant cellulose-bindning module-proteins by affinity adsorption on an ultra-high-capacity cellulosic adsorbent. Anal Chim Acta 621(2):193–199. doi: 10.1016/j.aca.2008.05.041 PubMedCrossRefGoogle Scholar
  13. 13.
    Hong J, Ye XH, Zhang YHP (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23(25):12535–12540. doi: 10.1021/La7025686 PubMedCrossRefGoogle Scholar
  14. 14.
    Levy I, Shoseyov O (2004) Cross bridging proteins in nature and their utilization in bio- and nanotechnology. Curr Protein Pept Sci 5(1):33–49PubMedCrossRefGoogle Scholar
  15. 15.
    Levy I, Shoseyov O (2002) Cellulose-binding domains biotechnological applications. Biotechnol Adv 20(3–4):191–213PubMedCrossRefGoogle Scholar
  16. 16.
    Babu KS, Antony A, Muthukumaran T, Meenakshisundaram S (2008) Construction of intein-mediated hGMCSF expression vector and its purification in Pichia pastoris. Protein Expr Purif 57(2):201–205. doi: 10.1016/j.pep.2007.10.004 CrossRefGoogle Scholar
  17. 17.
    Hong J, Wang YR, Ye XH, Zhang YHP (2008) Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J Chromatogr A 1194(2):150–154. doi: 10.1016/j.chroma.2008.04.048
  18. 18.
    Wan W, Wang D, Gao X, Hong J (2011) Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol 91(3):789–798. doi: 10.1007/s00253-011-3373-5 PubMedCrossRefGoogle Scholar
  19. 19.
    Zhao Z, Lu W, Dun B, Jin D, Ping S, Zhang W, Chen M, Xu MQ, Lin M (2008) Purification of green fluorescent protein using a two-intein system. Appl Microbiol Biotechnol 77(5):1175–1180. doi: 10.1007/s00253-007-1233-0 PubMedCrossRefGoogle Scholar
  20. 20.
    Chong S, Shao Y, Paulus H, Benner J, Perler FB, Xu MQ (1996) Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem 271(36):22159–22168PubMedCrossRefGoogle Scholar
  21. 21.
    Chong S, Xu MQ (1997) Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem 272(25):15587–15590PubMedCrossRefGoogle Scholar
  22. 22.
    Elleuche S, Poggeler S (2010) Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol 87(2):479–489. doi: 10.1007/s00253-010-2628-x PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685PubMedCrossRefGoogle Scholar
  24. 24.
    Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable beta-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73(6):1331–1339. doi: 10.1007/s00253-006-0618-9 PubMedCrossRefGoogle Scholar
  25. 25.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Life ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations