Advertisement

Targeted Purification of SnAvi-Tagged Proteins

  • Ursula SchäfferEmail author
  • Ralf Baumeister
  • Ekkehard Schulze
Protocol
  • 2.6k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1177)

Abstract

Tandem affinity purification (TAP) is a powerful technique to identify protein complex members. The modular composition of TAP-tags allows two sequential protein enrichment steps and thereby drastically reduces the amount of contaminants. Here, we describe the application of the SnAvi-tag—a TAP-tag useful in different expression systems. Due to its modular composition, this tag is multifunctional and facilitates among others the in vivo visualization of tagged proteins and their cell type specific activation.

Key words

Protein complex purification Protein tag Tandem affinity purification (TAP) Tissue specificity Targeted in vivo biotinylation Tag activation In vivo visualization Mass spectrometry Protein interaction Protein modification 

Notes

Acknowledgments

We would like to thank Angelika Schäfer, Antje Thien, Meta Rath, Caroline Scherzinger, Birte Manßhard, Caroline Keck, Gregor Bochenek, Erika v. Gromoff, and Birgit Holzwarth for experimental contributions to this project and Bettina Schulze for critical reading of the manuscript. Worm strains were obtained from the Caenorhabditis Genetics Center (CGC) at the University of Minnesota. The SB1 hybridoma cell line was developed by Michael Nonet and Gayla Hadwiger. We obtained it from the Developmental Studies Hybridoma Bank which was developed under the auspices of the NICHD and is maintained by the University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. This work was supported by Deutsche Forschungsgemeinschaft (CRC746).

References

  1. 1.
    Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17(10):1030–1032. doi: 10.1038/13732 PubMedCrossRefGoogle Scholar
  2. 2.
    Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147, 10.1038/415141a415141a [pii]PubMedCrossRefGoogle Scholar
  3. 3.
    Bürckstümmer T, Bennett KL, Preradovic A, Schütze G, Hantschel O, Superti-Furga G, Bauch A (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3(12):1013–1019. doi: 10.1038/nmeth968, nmeth968 [pii]PubMedCrossRefGoogle Scholar
  4. 4.
    Schimanski B, Nguyen TN, Günzl A (2005) Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot Cell 4(11):1942–1950. doi: 10.1128/EC.4.11.1942-1950.2005, 4/11/1942 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR 3rd, Oegema K, Desai A (2004) A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 18(18):2255–2268. doi:10.1101/gad.123410418/18/2255 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Polanowska J, Martin JS, Fisher R, Scopa T, Rae I, Boulton SJ (2004) Tandem immunoaffinity purification of protein complexes from Caenorhabditis elegans. Biotechniques 36(5):778–780PubMedGoogle Scholar
  7. 7.
    Tsai A, Carstens RP (2006) An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat Protoc 1(6):2820–2827, nprot.2006.371 [pii]10.1038/nprot.2006.371PubMedCrossRefGoogle Scholar
  8. 8.
    Schäffer U, Schlosser A, Müller KM, Schäfer A, Katava N, Baumeister R, Schulze E (2010) SnAvi-a new tandem tag for high-affinity protein-complex purification. Nucleic Acids Res 38(6):e91. doi: 10.1093/nar/gkp1178, gkp1178 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8(4):921–929. doi: 10.1110/ps.8.4.921 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Schatz PJ (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y) 11(10):1138–1143CrossRefGoogle Scholar
  11. 11.
    Laitinen OH, Hytonen VP, Nordlund HR, Kulomaa MS (2006) Genetically engineered avidins and streptavidins. Cell Mol Life Sci 63(24):2992–3017. doi: 10.1007/s00018-006-6288-z PubMedCrossRefGoogle Scholar
  12. 12.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805PubMedCrossRefGoogle Scholar
  13. 13.
    Dougherty WG, Cary SM, Parks TD (1989) Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology 171(2):356–364PubMedCrossRefGoogle Scholar
  14. 14.
    Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451–482PubMedCrossRefGoogle Scholar
  15. 15.
    Praitis V (2006) Creation of transgenic lines using microparticle bombardment methods. Methods Mol Biol 351:93–107PubMedGoogle Scholar
  16. 16.
    Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157(3):1217–1226PubMedCentralPubMedGoogle Scholar
  17. 17.
    Hadwiger G, Dour S, Arur S, Fox P, Nonet ML (2010) A monoclonal antibody toolkit for C. elegans. PLoS One 5(4):e10161. doi: 10.1371/journal.pone.0010161 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Larance M, Bailly AP, Pourkarimi E, Hay RT, Buchanan G, Coulthurst S, Xirodimas DP, Gartner A, Lamond AI (2011) Stable-isotope labeling with amino acids in nematodes. Nat Methods 8(10):849–851. doi: 10.1038/nmeth.1679, nmeth.1679 [pii]PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ursula Schäffer
    • 1
    Email author
  • Ralf Baumeister
    • 2
    • 3
    • 4
    • 5
    • 6
  • Ekkehard Schulze
    • 7
  1. 1.Institute for Biology 3University of FreiburgFreiburgGermany
  2. 2.Faculty of Biology, Institute of Biology IIIUniversity of FreiburgFreiburgGermany
  3. 3.Faculty of Medicine, Center for Biochemistry and Molecular Cell ResearchUniversity of FreiburgFreiburgGermany
  4. 4.Center for Biological Signalling Studies (BIOSS)University of FreiburgFreiburgGermany
  5. 5.Freiburg Center for Advanced Studies (FRIAS)University of FreiburgFreiburgGermany
  6. 6.Center for Biological Systems Analysis (ZBSA)University of FreiburgFreiburgGermany
  7. 7.Faculty of Biology, Center for Biological Signalling Studies (BIOSS), Institute of Biology IIIUniversity of FreiburgFreiburgGermany

Personalised recommendations